
Yusuke Morino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9601260/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of Surface Coating on the Low Temperature Performance of a Sulfide-Based All-Solid-State Battery Cathode. Electrochemistry, 2022, 90, 027001-027001.	1.4	24
2	Cycle Degradation Analysis by High Precision Coulometry for Sulfide-Based All-Solid-State Battery Cathode under Various Potentials. Electrochemistry, 2022, 90, 047003-047003.	1.4	11
3	AC Impedance Analysis of the Degeneration and Recovery of Argyrodite Sulfide-Based Solid Electrolytes under Dry-Room-Simulated Condition. Electrochemistry, 2022, 90, 037012-037012.	1.4	14
4	Interface Behavior of Electrolyte/Quinone Organic Active Material in Battery Operation by <i>Operando</i> Surface-Enhanced Raman Spectroscopy. Langmuir, 2022, 38, 3951-3958.	3.5	1
5	Degradation rate at the Solid–Solid interface of sulfide-based solid Electrolyte–Cathode active material. Journal of Power Sources, 2022, 541, 231672.	7.8	18
6	<i>Operando</i> atomic force microscopy study of electric double-layer transistors based on ionic liquid/rubrene single crystal interfaces. Applied Physics Letters, 2021, 118, .	3.3	5
7	Electrochemical and material analyses for sulfide-based solid electrolyte–cathode interface under high voltage. Journal of Power Sources, 2021, 509, 230376.	7.8	20
8	Rapid improvements in charge carrier mobility at ionic liquid/pentacene single crystal interfaces by self-cleaning. Physical Chemistry Chemical Physics, 2020, 22, 6131-6135.	2.8	6
9	Gradual improvements of charge carrier mobility at ionic liquid/rubrene single crystal interfaces. Applied Physics Letters, 2016, 108, .	3.3	13
10	Molecularly clean ionic liquid/rubrene single-crystal interfaces revealed by frequency modulation atomic force microscopy. Physical Chemistry Chemical Physics, 2015, 17, 6794-6800.	2.8	17
11	Clean surface processing of rubrene single crystal immersed in ionic liquid by using frequency modulation atomic force microscopy. Applied Physics Letters, 2014, 104, .	3.3	15
12	Fabrication of ionic liquid ultrathin film by sequential deposition. Japanese Journal of Applied Physics, 2014, 53, 05FY01.	1.5	9