
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9601173/publications.pdf Version: 2024-02-01

SUN FUVINC

#	Article	IF	CITATIONS
1	From metal–organic framework (MOF) to MOF–polymer composite membrane: enhancement of low-humidity proton conductivity. Chemical Science, 2013, 4, 983-992.	3.7	329
2	A Stable Metal–Organic Framework Featuring a Local Buffer Environment for Carbon Dioxide Fixation. Angewandte Chemie - International Edition, 2018, 57, 4657-4662.	7.2	283
3	Hydrogen Selective NH ₂ â€MILâ€53(Al) MOF Membranes with High Permeability. Advanced Functional Materials, 2012, 22, 3583-3590.	7.8	254
4	Construction of Thermophilic Lipase-Embedded Metal–Organic Frameworks via Biomimetic Mineralization: A Biocatalyst for Ester Hydrolysis and Kinetic Resolution. ACS Applied Materials & Interfaces, 2016, 8, 24517-24524.	4.0	197
5	A porous metal–organic framework formed by a V-shaped ligand and Zn(<scp>ii</scp>) ion with highly selective sensing for nitroaromatic explosives. Journal of Materials Chemistry A, 2015, 3, 16598-16603.	5.2	158
6	Targeted synthesis of a porous aromatic framework with a high adsorption capacity for organic molecules. Journal of Materials Chemistry, 2011, 21, 13498.	6.7	146
7	In situ growth of continuous thin metal–organic framework film for capacitive humidity sensing. Journal of Materials Chemistry, 2011, 21, 3775.	6.7	145
8	Synthesis of a porous aromatic framework for adsorbing organic pollutants application. Journal of Materials Chemistry, 2011, 21, 10348.	6.7	138
9	Porous aromatic frameworks with anion-templated pore apertures serving as polymeric sieves. Nature Communications, 2014, 5, 4260.	5.8	132
10	A bifunctional metal–organic framework featuring the combination of open metal sites and Lewis basic sites for selective gas adsorption and heterogeneous cascade catalysis. Journal of Materials Chemistry A, 2016, 4, 15240-15246.	5.2	120
11	Acid degradable ZnO quantum dots as a platform for targeted delivery of an anticancer drug. Journal of Materials Chemistry, 2011, 21, 13406.	6.7	116
12	Dual luminescent covalent organic frameworks for nitro-explosive detection. Journal of Materials Chemistry A, 2019, 7, 27148-27155.	5.2	108
13	An Exceptionally Stable Tb ^{III} -Based Metal–Organic Framework for Selectively and Sensitively Detecting Antibiotics in Aqueous Solution. Inorganic Chemistry, 2019, 58, 7746-7753.	1.9	105
14	Post-metalation of porous aromatic frameworks for highly efficient carbon capture from CO ₂ + N ₂ and CH ₄ + N ₂ mixtures. Polymer Chemistry, 2014, 5, 144-152.	1.9	101
15	Novel lithium-loaded porous aromatic framework for efficient CO ₂ and H ₂ uptake. Journal of Materials Chemistry A, 2013, 1, 752-758.	5.2	88
16	An acid-stable hexaphosphate ester based metal–organic framework and its polymer composite as proton exchange membrane. Journal of Materials Chemistry A, 2017, 5, 12943-12950.	5.2	87
17	A Molecular Coordination Template Strategy for Designing Selective Porous Aromatic Framework Materials for Uranyl Capture. ACS Central Science, 2019, 5, 1432-1439.	5.3	86
18	Two 3D Metal–Organic Frameworks Based on Co ^{II} and Zn ^{II} Clusters for Knoevenagel Condensation Reaction and Highly Selective Luminescence Sensing. Crystal Growth and Design, 2018, 18, 5573-5581.	1.4	84

#	Article	IF	CITATIONS
19	Microwave-assisted crystallization inclusion of spiropyran molecules in indium trimesate films with antidromic reversible photochromism. Journal of Materials Chemistry, 2012, 22, 25019.	6.7	77
20	Imparting surface hydrophobicity to metal–organic frameworks using a facile solution-immersion process to enhance water stability for CO ₂ capture. Nanoscale, 2017, 9, 2003-2008.	2.8	77
21	Challenging fabrication of hollow ceramic fiber supported Cu3(BTC)2 membrane for hydrogen separation. Journal of Materials Chemistry, 2012, 22, 10322.	6.7	75
22	Design and Construction of a Metal–Organic Framework as an Efficient Luminescent Sensor for Detecting Antibiotics. Inorganic Chemistry, 2020, 59, 1323-1331.	1.9	72
23	Porous aromatic framework with mesopores as a platform for a super-efficient heterogeneous Pd-based organometallic catalysis. Chemical Science, 2018, 9, 3523-3530.	3.7	71
24	A Versatile Microporous Zinc(II) Metal–Organic Framework for Selective Gas Adsorption, Cooperative Catalysis, and Luminescent Sensing. Inorganic Chemistry, 2018, 57, 7314-7320.	1.9	69
25	Construction of Porous Aromatic Frameworks with Exceptional Porosity via Building Unit Engineering. Advanced Materials, 2018, 30, e1804169.	11.1	66
26	An Amino-Coordinated Metal–Organic Framework for Selective Gas Adsorption. Inorganic Chemistry, 2017, 56, 6938-6942.	1.9	61
27	Reticular Synthesis of a Series of HKUST-like MOFs with Carbon Dioxide Capture and Separation. Inorganic Chemistry, 2016, 55, 9071-9076.	1.9	58
28	A highly robust metal–organic framework based on an aromatic 12-carboxyl ligand with highly selective adsorption of CO ₂ over CH ₄ . Chemical Communications, 2015, 51, 9463-9466.	2.2	56
29	Sensitive detection of hazardous explosives via highly fluorescent crystalline porous aromatic frameworks. Journal of Materials Chemistry, 2012, 22, 24558.	6.7	54
30	Solvent-Induced Single Crystal To Single Crystal Transformation and Complete Metal Exchange of a Pyrene-Based Metal–Organic Framework. Crystal Growth and Design, 2014, 14, 1738-1743.	1.4	51
31	Growth of large single MOF crystals and effective separation of organic dyes. CrystEngComm, 2013, 15, 4094.	1.3	50
32	Single- and Double-Layer Structures and Sorption Properties of Two Microporous Metal–Organic Frameworks with Flexible Tritopic Ligand. Crystal Growth and Design, 2013, 13, 1458-1463.	1.4	42
33	Coupling fullerene into porous aromatic frameworks for gas selective sorption. Chemical Science, 2016, 7, 3751-3756.	3.7	42
34	Fluorescent Dodecapus in 3D Framework. Crystal Growth and Design, 2014, 14, 4258-4261.	1.4	41
35	Syntheses, structures and luminescence properties of three metal–organic frameworks based on 5-(4-(2H-tetrazol-5-yl)phenoxy)isophthalic acid. CrystEngComm, 2014, 16, 339-343.	1.3	39
36	Four new metal–organic frameworks based on bi-, tetra-, penta-, and hexa-nuclear clusters derived from 5-(phenyldiazenyl)isophthalic acid: syntheses, structures and properties. CrystEngComm, 2015, 17, 1201-1209.	1.3	39

#	Article	IF	CITATIONS
37	An Anionic Indium–Organic Framework with Spirobifluorene-Based Ligand for Selective Adsorption of Organic Dyes. Inorganic Chemistry, 2021, 60, 1571-1578.	1.9	39
38	Facile Synthesis of Ultrastable Porous Aromatic Frameworks by Suzuki–Miyaura Coupling Reaction for Adsorption Removal of Organic Dyes. Chemistry - A European Journal, 2019, 25, 3903-3908.	1.7	38
39	A Double-Walled Porous Metal–Organic Framework as a Highly Efficient Catalyst for Chemical Fixation of CO ₂ with Epoxides. Inorganic Chemistry, 2019, 58, 15637-15643.	1.9	37
40	A Stable Metal–Organic Framework Featuring a Local Buffer Environment for Carbon Dioxide Fixation. Angewandte Chemie, 2018, 130, 4747-4752.	1.6	32
41	Growth of preferential orientation of MIL-53(Al) film as nano-assembler. CrystEngComm, 2012, 14, 5487.	1.3	30
42	Size, Shape, and Porosity Control of Medi-MOF-1 via Growth Modulation under Microwave Heating. Crystal Growth and Design, 2019, 19, 889-895.	1.4	29
43	Three novel zinc(<scp>ii</scp>) metal–organic frameworks based on three tetrazolate ligands: synthesis, structures and photoluminescence. RSC Advances, 2014, 4, 21535-21540.	1.7	28
44	Pd(II)-Catalyzed ortho-C–H Olefination/Dearomatization of N-Aryl Ureas: An Approach to Imine Derivatives. Organic Letters, 2016, 18, 1426-1429.	2.4	28
45	Facile synthesis of a continuous thin Cu(bipy)2(SiF6) membrane with selectivity towards hydrogen. Journal of Materials Chemistry A, 2013, 1, 11438.	5.2	27
46	Facile synthesis of ZIF-8 nanocrystals in eutectic mixture. CrystEngComm, 2012, 14, 8365.	1.3	25
47	Novel Pyrene-Based Anionic Metal–Organic Framework for Efficient Organic Dye Elimination. Crystal Growth and Design, 2017, 17, 2453-2457.	1.4	25
48	Fabrication of Crystalline Microporous Membrane from 2D MOF Nanosheets for Gas Separation. Chemistry - an Asian Journal, 2020, 15, 2371-2378.	1.7	24
49	Trigonal prism or octahedron: the conformational change of a dendritic six-node ligand in MOFs. Journal of Materials Chemistry A, 2013, 1, 10112.	5.2	20
50	Porous aromatic framework (PAF-1) as hyperstable platform for enantioselective organocatalysis. Science China Materials, 2019, 62, 194-202.	3.5	19
51	Interfacial growth of 2D MOF membranes <i>via</i> contra-diffusion for CO ₂ separation. Materials Chemistry Frontiers, 2021, 5, 5150-5157.	3.2	19
52	Two flexible cationic metal-organic frameworks with remarkable stability for CO2/CH4 separation. Nano Research, 2021, 14, 3288-3293.	5.8	15
53	Imine-linked porous aromatic frameworks based on spirobifluorene building blocks for CO2 separation. Microporous and Mesoporous Materials, 2022, 334, 111779.	2.2	15
54	Fabrication of zeolite MFI membranes supported by α-Al ₂ O ₃ hollow ceramic fiï¬bers for CO ₂ separation. Journal of Materials Research, 2013, 28, 1870-1876.	1.2	12

#	Article	IF	CITATIONS
55	Single-Electron Oxidation/Alterable C3- and C10-Arylation of 9-MeO-phenanthrene. Organic Letters, 2018, 20, 3591-3595.	2.4	10
56	A Highly Crystalline Fluoreneâ€Based Porous Organic Framework with High Photoluminescence Quantum Yield. Macromolecular Rapid Communications, 2019, 40, e1900060.	2.0	10
57	Proton conducting in a new vanadoborate with 3D structure through hydrogen bonding. Journal of Alloys and Compounds, 2020, 816, 152505.	2.8	10
58	Synthesis and characterization of germanium-centered three-dimensional crystalline porous aromatic framework. Journal of Materials Research, 2012, 27, 1417-1420.	1.2	8
59	Synthesis, structure and properties of two new coordination polymers based on 4-[(8-hydroxy-5-quinolinyl)azo]-benzenesulfonic acid. Chemical Research in Chinese Universities, 2014, 30, 27-31.	1.3	8
60	Efficient proton conductivity of a novel 3D open-framework vanadoborate with [V ₆ B ₂₀] architectures. Dalton Transactions, 2021, 50, 3240-3246.	1.6	8
61	Novel porous aromatic framework with excellent separation capability of CO2 in N2 or CH4. Chemical Research in Chinese Universities, 2014, 30, 1018-1021.	1.3	4
62	Proton-Conducting Vanadoborate with New [V ₁₀ B ₂₆] Clusters. Crystal Growth and Design, 2022, 22, 1824-1830.	1.4	4
63	Pentanuclear clusters resembling the cubane-dangler connectivity in the native oxygen-evolving center of photosystem II. Chemical Communications, 2021, 57, 113-116.	2.2	3
64	Manganese-promoted cleavage of acetylacetonate resembling the β-diketone cleaving dioxygenase (Dke1) reactivity. Chemical Communications, 2021, 57, 9462-9465.	2.2	1
65	Facile Synthesis of MILâ€68(In) Films with Controllable Morphology. European Journal of Inorganic Chemistry, 2012, 2012, 0-0.	1.0	0