Yufen Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9601150/publications.pdf Version: 2024-02-01

YUFEN ZHANC

#	Article	IF	CITATIONS
1	Characterization and source apportionment of volatile organic compounds based on 1-year of observational data in Tianjin, China. Environmental Pollution, 2016, 218, 757-769.	3.7	185
2	Characterization and source apportionment of PM2.5 based on error estimation from EPA PMF 5.0 model at a medium city in China. Environmental Pollution, 2017, 222, 10-22.	3.7	165
3	Aerosol pH and its driving factors in Beijing. Atmospheric Chemistry and Physics, 2019, 19, 7939-7954.	1.9	131
4	Dispersion Normalized PMF Provides Insights into the Significant Changes in Source Contributions to PM _{2.5} after the COVID-19 Outbreak. Environmental Science & Technology, 2020, 54, 9917-9927.	4.6	126
5	Chemical nature of PM2.5 and PM10 in Xi'an, China: Insights into primary emissions and secondary particle formation. Environmental Pollution, 2018, 240, 155-166.	3.7	100
6	Source apportionment and heavy metal health risk (HMHR) quantification from sources in a southern city in China, using an ME2-HMHR model. Environmental Pollution, 2017, 221, 335-342.	3.7	99
7	Residential coal combustion as a source of primary sulfate in Xi'an, China. Atmospheric Environment, 2019, 196, 66-76.	1.9	95
8	Characteristics of the main primary source profiles of particulate matter across China from 1987 to 2017. Atmospheric Chemistry and Physics, 2019, 19, 3223-3243.	1.9	76
9	Source apportionment of atmospheric pollutants based on the online data by using PMF and ME2 models at a megacity, China. Atmospheric Research, 2017, 185, 22-31.	1.8	70
10	Effect of Aerosols on Visibility and Radiation in Spring 2009 in Tianjin, China. Aerosol and Air Quality Research, 2012, 12, 211-217.	0.9	67
11	Revealing Drivers of Haze Pollution by Explainable Machine Learning. Environmental Science and Technology Letters, 2022, 9, 112-119.	3.9	65
12	Neutral and ionic per- and polyfluoroalkyl substances (PFASs) in atmospheric and dry deposition samples over a source region (Tianjin, China). Environmental Pollution, 2016, 212, 449-456.	3.7	50
13	Spatial, seasonal and diurnal patterns in physicochemical characteristics and sources of PM2.5 in both inland and coastal regions within a megacity in China. Journal of Hazardous Materials, 2018, 342, 139-149.	6.5	48
14	Effectiveness evaluation of temporary emission control action in 2016 in winter in Shijiazhuang, China. Atmospheric Chemistry and Physics, 2018, 18, 7019-7039.	1.9	46
15	A refined source apportionment study of atmospheric PM2.5 during winter heating period in Shijiazhuang, China, using a receptor model coupled with a source-oriented model. Atmospheric Environment, 2020, 222, 117157.	1.9	43
16	PM2.5 source apportionment during severe haze episodes in a Chinese megacity based on a 5-month period by using hourly species measurements: Explore how to better conduct PMF during haze episodes. Atmospheric Environment, 2020, 224, 117364.	1.9	41
17	Spring Festival and COVIDâ€19 Lockdown: Disentangling PM Sources in Major Chinese Cities. Geophysical Research Letters, 2021, 48, e2021GL093403.	1.5	40
18	Sensitivity of PM2.5 and O3 pollution episodes to meteorological factors over the North China Plain. Science of the Total Environment, 2021, 792, 148474.	3.9	40

YUFEN ZHANG

#	Article	IF	CITATIONS
19	Boundary layer structure and scavenging effect during a typical winter haze-fog episode in a core city of BTH region, China. Atmospheric Environment, 2018, 179, 187-200.	1.9	39
20	Air humidity affects secondary aerosol formation in different pathways. Science of the Total Environment, 2021, 759, 143540.	3.9	39
21	Changes in source contributions to particle number concentrations after the COVID-19 outbreak: Insights from a dispersion normalized PMF. Science of the Total Environment, 2021, 759, 143548.	3.9	39
22	Atmospheric metallic and arsenic pollution at an offshore drilling platform in the Bo Sea: A health risk assessment for the workers. Journal of Hazardous Materials, 2016, 304, 93-102.	6.5	35
23	Multi-scale volatile organic compound (VOC) source apportionment in Tianjin, China, using a receptor model coupled with 1-hr resolution data. Environmental Pollution, 2020, 265, 115023.	3.7	35
24	Chemical characteristics and source apportionment of PM2.5 using PMF modelling coupled with 1-hr resolution online air pollutant dataset for Linfen, China. Environmental Pollution, 2020, 263, 114532.	3.7	35
25	Fine carbonaceous aerosol characteristics at a megacity during the Chinese Spring Festival as given by OC/EC online measurements. Atmospheric Research, 2016, 181, 20-28.	1.8	32
26	Source apportionment and a novel approach of estimating regional contributions to ambient PM2.5 in Haikou, China. Environmental Pollution, 2017, 223, 334-345.	3.7	32
27	Impacts of meteorology and precursor emission change on O3 variation in Tianjin, China from 2015 to 2021. Journal of Environmental Sciences, 2023, 126, 506-516.	3.2	32
28	Multiply improved positive matrix factorization for source apportionment of volatile organic compounds during the COVID-19 shutdown in Tianjin, China. Environment International, 2022, 158, 106979.	4.8	31
29	Characterization and Spatial Source Apportionments of Ambient PM10 and PM2.5 during the Heating Period in Tian'jin, China. Aerosol and Air Quality Research, 2020, 20, 1-13.	0.9	30
30	Source apportionment of ambient PM 10 and PM 2.5 in Haikou, China. Atmospheric Research, 2017, 190, 1-9.	1.8	26
31	Haze episodes before and during the COVID-19 shutdown in Tianjin, China: Contribution of fireworks and residential burning. Environmental Pollution, 2021, 286, 117252.	3.7	25
32	Spatial and temporal characteristics of PM 2.5 acidity during autumn in marine and coastal area of Bohai Sea, China, based on two-site contrast. Atmospheric Research, 2018, 202, 196-204.	1.8	24
33	Characteristics and sources of the fine carbonaceous aerosols in Haikou, China. Atmospheric Research, 2018, 199, 103-112.	1.8	22
34	Source directional apportionment of ambient PM2.5 in urban and industrial sites at a megacity in China. Atmospheric Research, 2020, 235, 104764.	1.8	21
35	Long-term trends in fog and boundary layer characteristics in Tianjin, China. Particuology, 2015, 20, 61-68.	2.0	20
36	Impact of meteorological condition changes on air quality and particulate chemical composition during the COVID-19 lockdown. Journal of Environmental Sciences, 2021, 109, 45-56.	3.2	20

YUFEN ZHANG

#	Article	IF	CITATIONS
37	The fractionation and geochemical characteristics of rare earth elements measured in ambient size-resolved PM in an integrated iron and steelmaking industry zone. Environmental Science and Pollution Research, 2016, 23, 17191-17199.	2.7	17
38	Analysis of surface and vertical measurements of O3 and its chemical production in the NCP region, China. Atmospheric Environment, 2020, 241, 117759.	1.9	17
39	Vertical characteristics and source identification of FM10 in Tianjin. Journal of Environmental Sciences, 2012, 24, 112-115.	3.2	16
40	Chemical characteristics and sources of ambient PM2.5 in a harbor area: Quantification of health risks to workers from source-specific selected toxic elements. Environmental Pollution, 2021, 268, 115926.	3.7	16
41	Source apportionment of PM2.5 using online and offline measurements of chemical components in Tianjin, China. Atmospheric Environment, 2021, 244, 117942.	1.9	16
42	Improving spatial resolution of soil fugitive dust emission inventory using RS-GIS technology: An application case in Tianjin, China. Atmospheric Environment, 2018, 191, 46-54.	1.9	15
43	China's ineffective plastic solution to haze. Science, 2019, 364, 1145-1145.	6.0	15
44	Improved positive matrix factorization for source apportionment of volatile organic compounds in vehicular emissions during the Spring Festival in Tianjin, China. Environmental Pollution, 2022, 303, 119122.	3.7	15
45	Assessment of Meteorological Impact and Emergency Plan for a Heavy Haze Pollution Episode in a Core City of the North China Plain. Aerosol and Air Quality Research, 2020, 20, 26-42.	0.9	14
46	A size-resolved chemical mass balance (SR-CMB) approach for source apportionment of ambient particulate matter by single element analysis. Atmospheric Environment, 2019, 197, 45-52.	1.9	13
47	Chemical, optical and radiative characteristics of aerosols during haze episodes of winter in the North China Plain. Atmospheric Environment, 2018, 181, 164-176.	1.9	10
48	Size and chemical characteristics of particles emitted from typical rural biomass cookstoves in North China. Atmospheric Research, 2021, 249, 105295.	1.8	10
49	Health risks of inhaled selected toxic elements during the haze episodes in Shijiazhuang, China: Insight into critical risk sources. Environmental Pollution, 2021, 276, 116664.	3.7	10
50	Responses in PM2.5 and its chemical components to typical unfavorable meteorological events in the suburban area of Tianjin, China. Science of the Total Environment, 2021, 788, 147814.	3.9	10
51	Application and validation of the fugitive dust source emission inventory compilation method in Xiong'an New Area, China. Science of the Total Environment, 2021, 798, 149114.	3.9	10
52	Dramatic changes in atmospheric pollution source contributions for a coastal megacity in northern China from 2011 to 2020. Atmospheric Chemistry and Physics, 2022, 22, 8597-8615.	1.9	10
53	Size-Classified Variations in Carbonaceous Aerosols from Real Coal-Fired Boilers. Energy & Fuels, 2016, 30, 39-46.	2.5	8
54	The effect of atmospheric particulates on the rainwater chemistry in the Yangtze River Delta, China. Journal of the Air and Waste Management Association, 2019, 69, 1452-1466.	0.9	8

YUFEN ZHANG

#	Article	IF	CITATIONS
55	Size distribution and chemical characteristics of particles from crop residue open burning in North China. Journal of Environmental Sciences, 2021, 109, 66-76.	3.2	7
56	Optimized approach for developing soil fugitive dust emission inventory in "2+26" Chinese cities. Environmental Pollution, 2021, 285, 117521.	3.7	6
57	Application of the high spatiotemporal resolution soil fugitive dust emission inventory compilation method based on CAMx model. Atmospheric Research, 2021, 262, 105770.	1.8	6
58	Diesel vehicle emission accounts for the dominate NO source to atmospheric particulate nitrate in a coastal city: Insights from nitrate dual isotopes of PM2.5. Atmospheric Research, 2022, 278, 106328.	1.8	6
59	Potential health risks of inhaled toxic elements and risk sources during different COVID-19 lockdown stages in Linfen, China. Environmental Pollution, 2021, 284, 117454.	3.7	5
60	An estimation method for regional transport contributions from emission sources based on a high-mountain site: a case study in Zhumadian, China. Atmospheric Environment, 2021, 263, 118664.	1.9	3
61	Chemical Analysis of Particulate Matter in the Harvest Period in an Agricultural Region of Eastern China. Aerosol and Air Quality Research, 2017, 17, 2381-2389.	0.9	3
62	Exploring the Sensitivity of Visibility to PM2.5 Mass Concentration and Relative Humidity for Different Aerosol Types. Atmosphere, 2022, 13, 471.	1.0	3
63	Evaluating the performance of chemical transport models for PM2.5 source apportionment: An integrated application of spectral analysis and grey incidence analysis. Science of the Total Environment, 2022, 837, 155781.	3.9	3
64	The Characteristics of Heavy Ozone Pollution Episodes and Identification of the Primary Driving Factors Using a Generalized Additive Model (GAM) in an Industrial Megacity of Northern China. Atmosphere, 2021, 12, 1517.	1.0	2
65	Insight into the critical factors determining the particle number concentrations during summer at a megacity in China, Journal of Environmental Sciences, 2019, 75, 169-180.	3.2	1