Udai Bhan Pandey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9600478/publications.pdf Version: 2024-02-01

Πολι Βηλη Ολησεν

#	Article	IF	CITATIONS
1	Matrin-3 dysfunction in myopathy and motor neuron degeneration. Neural Regeneration Research, 2022, 17, 575.	1.6	1
2	Autosomal Recessive Cerebellar Atrophy and Spastic Ataxia in Patients With Pathogenic Biallelic Variants in GEMIN5. Frontiers in Cell and Developmental Biology, 2022, 10, 783762.	1.8	10
3	Functional and structural deficiencies of Gemin5 variants associated with neurological disorders. Life Science Alliance, 2022, 5, e202201403.	1.3	7
4	Pathogenic variants of Valosinâ€containing protein induce lysosomal damage and transcriptional activation of autophagy regulators in neuronal cells. Neuropathology and Applied Neurobiology, 2022, 48, e12818.	1.8	5
5	NUP62 localizes to ALS/FTLD pathological assemblies and contributes to TDP-43 insolubility. Nature Communications, 2022, 13, .	5.8	26
6	Skeletal Muscle Pathogenesis in Polyglutamine Diseases. Cells, 2022, 11, 2105.	1.8	2
7	Huntingtin-mediated axonal transport requires arginine methylation by PRMT6. Cell Reports, 2021, 35, 108980.	2.9	20
8	Interactions between ALS-linked FUS and nucleoporins are associated with defects in the nucleocytoplasmic transport pathway. Nature Neuroscience, 2021, 24, 1077-1088.	7.1	54
9	Traumatic injury compromises nucleocytoplasmic transport and leads to TDP-43 pathology. ELife, 2021, 10, .	2.8	33
10	Loss of function mutations in GEMIN5 cause a neurodevelopmental disorder. Nature Communications, 2021, 12, 2558.	5.8	28
11	DDX17 is involved in DNA damage repair and modifies FUS toxicity in an RGG-domain dependent manner. Acta Neuropathologica, 2021, 142, 515-536.	3.9	20
12	A11â€Huntingtin-mediated axonal transport requires arginine methylation by PRMT6. , 2021, , .		0
13	Impairment of the mitochondrial one-carbon metabolism enzyme SHMT2 causes a novel brain and heart developmental syndrome. Acta Neuropathologica, 2020, 140, 971-975.	3.9	24
14	Insulin-like growth factor 1 signaling in motor neuron and polyglutamine diseases: From molecular pathogenesis to therapeutic perspectives. Frontiers in Neuroendocrinology, 2020, 57, 100821.	2.5	13
15	RNA dependent suppression of C9orf72 ALS/FTD associated neurodegeneration by Matrin-3. Acta Neuropathologica Communications, 2020, 8, 177.	2.4	17
16	RNA-recognition motif in Matrin-3 mediates neurodegeneration through interaction with hnRNPM. Acta Neuropathologica Communications, 2020, 8, 138.	2.4	32
17	Optogenetic TDP-43 nucleation induces persistent insoluble species and progressive motor dysfunction in vivo. Neurobiology of Disease, 2020, 146, 105078.	2.1	7
18	Inactivation of Hippo and cJun-N-terminal Kinase (JNK) signaling mitigate FUS mediated neurodegeneration in vivo. Neurobiology of Disease, 2020, 140, 104837.	2.1	32

Udai Bhan Pandey

#	Article	IF	CITATIONS
19	Nucleocytoplasmic Proteomic Analysis Uncovers eRF1 and Nonsense-Mediated Decay as Modifiers of ALS/FTD C9orf72 Toxicity. Neuron, 2020, 106, 90-107.e13.	3.8	58
20	Polyglutamine-Expanded Androgen Receptor Alteration of Skeletal Muscle Homeostasis and Myonuclear Aggregation Are Affected by Sex, Age and Muscle Metabolism. Cells, 2020, 9, 325.	1.8	21
21	FUS pathology in ALS is linked to alterations in multiple ALS-associated proteins and rescued by drugs stimulating autophagy. Acta Neuropathologica, 2019, 138, 67-84.	3.9	94
22	Dual Inhibition of GSK3β and CDK5 Protects the Cytoskeleton of Neurons from Neuroinflammatory-Mediated Degeneration InÂVitro and InÂVivo. Stem Cell Reports, 2019, 12, 502-517.	2.3	45
23	RNA Binding Antagonizes Neurotoxic Phase Transitions of TDP-43. Neuron, 2019, 102, 321-338.e8.	3.8	365
24	Muscleblind acts as a modifier of FUS toxicity by modulating stress granule dynamics and SMN localization. Nature Communications, 2019, 10, 5583.	5.8	31
25	Nuclear-Import Receptors Reverse Aberrant Phase Transitions of RNA-Binding Proteins with Prion-like Domains. Cell, 2018, 173, 677-692.e20.	13.5	376
26	Isogenic FUS-eGFP iPSC Reporter Lines Enable Quantification of FUS Stress Granule Pathology that Is Rescued by Drugs Inducing Autophagy. Stem Cell Reports, 2018, 10, 375-389.	2.3	95
27	Traumatic injury induces stress granule formation and enhances motor dysfunctions in ALS/FTD models. Human Molecular Genetics, 2018, 27, 1366-1381.	1.4	86
28	Mutation-dependent aggregation and toxicity in a Drosophila model for UBQLN2-associated ALS. Human Molecular Genetics, 2018, 27, 322-337.	1.4	30
29	A14â€Arginine methylation of huntingtin is a novel post-translational modification that impacts huntington's disease pathogenesis. , 2018, , .		0
30	RNP-Granule Assembly via Ataxin-2 Disordered Domains Is Required for Long-Term Memory and Neurodegeneration. Neuron, 2018, 98, 754-766.e4.	3.8	98
31	Mutations in TGM6 induce the unfolded protein response in SCA35. Human Molecular Genetics, 2017, 26, 3749-3762.	1.4	36
32	Nuclear localized C9orf72-associated arginine-containing dipeptides exhibit age-dependent toxicity in C. elegans. Human Molecular Genetics, 2017, 26, 4916-4928.	1.4	40
33	Autophagy Dysregulation in ALS: When Protein Aggregates Get Out of Hand. Frontiers in Molecular Neuroscience, 2017, 10, 263.	1.4	123
34	Stress granules at the intersection of autophagy and ALS. Brain Research, 2016, 1649, 189-200.	1.1	93
35	The chaperone HSPB8 reduces the accumulation of truncated TDP-43 species in cells and protects against TDP-43-mediated toxicity. Human Molecular Genetics, 2016, 25, 3908-3924.	1.4	72
36	Pur-alpha regulates cytoplasmic stress granule dynamics and ameliorates FUS toxicity. Acta Neuropathologica, 2016, 131, 605-620.	3.9	56

Udai Bhan Pandey

#	Article	IF	CITATIONS
37	Protein Arginine Methyltransferase 6 Enhances Polyglutamine-Expanded Androgen Receptor Function and Toxicity in Spinal and Bulbar Muscular Atrophy. Neuron, 2015, 85, 88-100.	3.8	89
38	A fruitful endeavor: Modeling ALS in the fruit fly. Brain Research, 2015, 1607, 47-74.	1.1	89
39	Antisense Proline-Arginine RAN Dipeptides Linked to C9ORF72-ALS/FTD Form Toxic Nuclear Aggregates that Initiate InÂVitro and InÂVivo Neuronal Death. Neuron, 2014, 84, 1213-1225.	3.8	459
40	Defects in Synapse Structure and Function Precede Motor Neuron Degeneration in <i>Drosophila</i> Models of FUS-Related ALS. Journal of Neuroscience, 2013, 33, 19590-19598.	1.7	65
41	RNA-binding ability of FUS regulates neurodegeneration, cytoplasmic mislocalization and incorporation into stress granules associated with FUS carrying ALS-linked mutations. Human Molecular Genetics, 2013, 22, 1193-1205.	1.4	187
42	Protein Arginine Methyltransferase 1 and 8 Interact with FUS to Modify Its Sub-Cellular Distribution and Toxicity In Vitro and In Vivo. PLoS ONE, 2013, 8, e61576.	1.1	80
43	Methods to Assay Drosophila Behavior. Journal of Visualized Experiments, 2012, , .	0.2	178
44	FUS-related proteinopathies: Lessons from animal models. Brain Research, 2012, 1462, 44-60.	1.1	54
45	Human Disease Models in <i>Drosophila melanogaster</i> and the Role of the Fly in Therapeutic Drug Discovery. Pharmacological Reviews, 2011, 63, 411-436.	7.1	849
46	A Drosophila model of FUS-related neurodegeneration reveals genetic interaction between FUS and TDP-43. Human Molecular Genetics, 2011, 20, 2510-2523.	1.4	177
47	HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO Journal, 2010, 29, 969-980.	3.5	660
48	Dynein light chain 1 is required for autophagy, protein clearance, and cell death in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 742-747.	3.3	50
49	Histone Deacetylases Suppress CGG Repeat–Induced Neurodegeneration Via Transcriptional Silencing in Models of Fragile X Tremor Ataxia Syndrome. PLoS Genetics, 2010, 6, e1001240.	1.5	93
50	HDAC6 at the Intersection of Autophagy, the Ubiquitin-proteasome System, and Neurodegeneration. Autophagy, 2007, 3, 643-645.	4.3	107
51	HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature, 2007, 447, 860-864.	13.7	1,068
52	Mutational spectrum of K-ras oncogene among Indian patients with gallbladder cancer. Journal of Gastroenterology and Hepatology (Australia), 2004, 19, 916-921.	1.4	35
53	Apolipoprotein B-100 Xba I gene polymorphism in gallbladder cancer. Human Genetics, 2004, 114, 280-283.	1.8	23
54	Molecular Screening of FRAXA and FRAXE in Indian Patients with Unexplained Mental Retardation. Genetic Testing and Molecular Biomarkers, 2002, 6, 335-339.	1.7	15