Xing Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9600393/publications.pdf

Version: 2024-02-01

218592 552653 7,720 26 26 26 citations h-index g-index papers 26 26 26 8758 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Core–Shell ZIF-8@ZIF-67-Derived CoP Nanoparticle-Embedded N-Doped Carbon Nanotube Hollow Polyhedron for Efficient Overall Water Splitting. Journal of the American Chemical Society, 2018, 140, 2610-2618.	6.6	1,556
2	Design of Single-Atom Co–N ₅ Catalytic Site: A Robust Electrocatalyst for CO ₂ Reduction with Nearly 100% CO Selectivity and Remarkable Stability. Journal of the American Chemical Society, 2018, 140, 4218-4221.	6.6	945
3	Well-Defined Materials for Heterogeneous Catalysis: From Nanoparticles to Isolated Single-Atom Sites. Chemical Reviews, 2020, 120, 623-682.	23.0	794
4	Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chemical Society Reviews, 2020, 49, 2215-2264.	18.7	582
5	MXene (Ti ₃ C ₂) Vacancy-Confined Single-Atom Catalyst for Efficient Functionalization of CO ₂ . Journal of the American Chemical Society, 2019, 141, 4086-4093.	6.6	479
6	A Bimetallic Zn/Fe Polyphthalocyanineâ€Derived Singleâ€Atom Feâ€N ₄ Catalytic Site:A Superior Trifunctional Catalyst for Overall Water Splitting and Zn–Air Batteries. Angewandte Chemie - International Edition, 2018, 57, 8614-8618.	7.2	455
7	Electronic structure and d-band center control engineering over M-doped CoP (M = Ni, Mn, Fe) hollow polyhedron frames for boosting hydrogen production. Nano Energy, 2019, 56, 411-419.	8.2	421
8	Regulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation. Nature Communications, 2019, 10, 4290.	5 . 8	326
9	High-Concentration Single Atomic Pt Sites on Hollow CuSx for Selective O2 Reduction to H2O2 in Acid Solution. CheM, 2019, 5, 2099-2110.	5.8	279
10	A photochromic composite with enhanced carrier separation for the photocatalytic activation of benzylic Câ \in "H bonds in toluene. Nature Catalysis, 2018, 1, 704-710.	16.1	273
11	Synergistically Interactive Pyridinicâ€N–MoP Sites: Identified Active Centers for Enhanced Hydrogen Evolution in Alkaline Solution. Angewandte Chemie - International Edition, 2020, 59, 8982-8990.	7.2	263
12	Synergetic Integration of Cu _{1.94} S–Zn _{<i>x</i>} Cd _{1–<i>x</i>} S Heteronanorods for Enhanced Visible-Light-Driven Photocatalytic Hydrogen Production. Journal of the American Chemical Society, 2016, 138, 4286-4289.	6.6	257
13	Three-dimensional open nano-netcage electrocatalysts for efficient pH-universal overall water splitting. Nature Communications, 2019, 10, 4875.	5 . 8	253
14	Porphyrin-like Fe-N4 sites with sulfur adjustment on hierarchical porous carbon for different rate-determining steps in oxygen reduction reaction. Nano Research, 2018, 11, 6260-6269.	5.8	118
15	Convenient fabrication of BiOBr ultrathin nanosheets with rich oxygen vacancies for photocatalytic selective oxidation of secondary amines. Nano Research, 2019, 12, 1625-1630.	5 . 8	96
16	Engineering Lattice Disorder on a Photocatalyst: Photochromic BiOBr Nanosheets Enhance Activation of Aromatic Câ€"H Bonds via Water Oxidation. Journal of the American Chemical Society, 2022, 144, 3386-3397.	6.6	96
17	Construction of N, P Coâ€Doped Carbon Frames Anchored with Fe Single Atoms and Fe ₂ P Nanoparticles as a Robust Coupling Catalyst for Electrocatalytic Oxygen Reduction. Advanced Materials, 2022, 34, .	11.1	93
18	Distinct Crystalâ€Facetâ€Dependent Behaviors for Singleâ€Atom Palladiumâ€Onâ€Ceria Catalysts: Enhanced Stabilization and Catalytic Properties. Advanced Materials, 2022, 34, e2107721.	11.1	78

#	ARTICLE	lF	CITATION
19	Toward Bifunctional Overall Water Splitting Electrocatalyst: General Preparation of Transition Metal Phosphide Nanoparticles Decorated N-Doped Porous Carbon Spheres. ACS Applied Materials & Interfaces, 2018, 10, 44201-44208.	4.0	71
20	A Bimetallic Zn/Fe Polyphthalocyanineâ€Derived Singleâ€Atom Feâ€N ₄ Catalytic Site:A Superior Trifunctional Catalyst for Overall Water Splitting and Zn–Air Batteries. Angewandte Chemie, 2018, 130, 8750-8754.	1.6	51
21	Controlled one-pot synthesis of RuCu nanocages and Cu@Ru nanocrystals for the regioselective hydrogenation of quinoline. Nano Research, 2016, 9, 2632-2640.	5.8	49
22	Synergistically Interactive Pyridinicâ€N–MoP Sites: Identified Active Centers for Enhanced Hydrogen Evolution in Alkaline Solution. Angewandte Chemie, 2020, 132, 9067-9075.	1.6	45
23	Anion-exchange-mediated internal electric field for boosting photogenerated carrier separation and utilization. Nature Communications, 2021, 12, 4952.	5.8	45
24	Pd-dispersed CuS hetero-nanoplates for selective hydrogenation of phenylacetylene. Nano Research, 2016, 9, 1209-1219.	5.8	35
25	Modifications of heterogeneous photocatalysts for hydrocarbon C–H bond activation and selective conversion. Chemical Communications, 2020, 56, 13918-13932.	2.2	32
26	Photocatalytic hydrogenation of nitroarenes using Cu1.94S-Zn0.23Cd0.77S heteronanorods. Nano Research, 2018, 11, 3730-3738.	5.8	28