Yinchang Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9600182/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Directed Synthesis of Mesoporous TiO ₂ Microspheres: Catalysts and Their Photocatalysis for Bisphenol A Degradation. Environmental Science & Technology, 2010, 44, 419-425.	4.6	280
2	Analysis of the Relationship between O3, NO and NO2 in Tianjin, China. Aerosol and Air Quality Research, 2011, 11, 128-139.	0.9	216
3	Characterization and source apportionment of volatile organic compounds based on 1-year of observational data in Tianjin, China. Environmental Pollution, 2016, 218, 757-769.	3.7	185
4	Source apportionment of PM10 in six cities of northern China. Atmospheric Environment, 2007, 41, 903-912.	1.9	174
5	Global review of recent source apportionments for airborne particulate matter. Science of the Total Environment, 2020, 740, 140091.	3.9	167
6	Using geoaccumulation index to study source profiles of soil dust in China. Journal of Environmental Sciences, 2008, 20, 571-578.	3.2	166
7	Characterization and source apportionment of PM2.5 based on error estimation from EPA PMF 5.0 model at a medium city in China. Environmental Pollution, 2017, 222, 10-22.	3.7	165
8	pH of Aerosols in a Polluted Atmosphere: Source Contributions to Highly Acidic Aerosol. Environmental Science & Technology, 2017, 51, 4289-4296.	4.6	147
9	Synthesis of mesoporous BiOBr 3D microspheres and their photodecomposition for toluene. Journal of Hazardous Materials, 2011, 192, 538-544.	6.5	135
10	Characterizations of resuspended dust in six cities of North China. Atmospheric Environment, 2006, 40, 5807-5814.	1.9	134
11	Chemical composition and source apportionment of ambient PM2.5 during the non-heating period in Taian, China. Atmospheric Research, 2016, 170, 23-33.	1.8	132
12	Dispersion Normalized PMF Provides Insights into the Significant Changes in Source Contributions to PM _{2.5} after the COVID-19 Outbreak. Environmental Science & Technology, 2020, 54, 9917-9927.	4.6	126
13	Assessment of heavy metal pollution characteristics and human health risk of exposure to ambient PM2.5 in Tianjin, China. Particuology, 2015, 20, 104-109.	2.0	104
14	Chemical nature of PM2.5 and PM10 in Xi'an, China: Insights into primary emissions and secondary particle formation. Environmental Pollution, 2018, 240, 155-166.	3.7	100
15	Source apportionment and heavy metal health risk (HMHR) quantification from sources in a southern city in China, using an ME2-HMHR model. Environmental Pollution, 2017, 221, 335-342.	3.7	99
16	Residential coal combustion as a source of primary sulfate in Xi'an, China. Atmospheric Environment, 2019, 196, 66-76.	1.9	95
17	Concentrations and sources of PAHs in surface sediments of the Fenhe reservoir and watershed, China. Ecotoxicology and Environmental Safety, 2012, 75, 198-206.	2.9	86
18	Estimated contributions and uncertainties of PCA/MLR–CMB results: Source apportionment for synthetic and ambient datasets. Atmospheric Environment, 2011, 45, 2811-2819.	1.9	84

#	Article	IF	CITATIONS
19	Improved Catalytic Capability of Mesoporous TiO ₂ Microspheres and Photodecomposition of Toluene. ACS Applied Materials & Interfaces, 2010, 2, 3134-3140.	4.0	82
20	Incorporating bioaccessibility into health risk assessment of heavy metals in particulate matter originated from different sources of atmospheric pollution. Environmental Pollution, 2019, 254, 113113.	3.7	81
21	Combined source apportionment, using positive matrix factorization–chemical mass balance and principal component analysis/multiple linear regression–chemical mass balance models. Atmospheric Environment, 2009, 43, 2929-2937.	1.9	79
22	Characteristics of the main primary source profiles of particulate matter across China from 1987 to 2017. Atmospheric Chemistry and Physics, 2019, 19, 3223-3243.	1.9	76
23	Source apportionment of atmospheric pollutants based on the online data by using PMF and ME2 models at a megacity, China. Atmospheric Research, 2017, 185, 22-31.	1.8	70
24	Revealing Drivers of Haze Pollution by Explainable Machine Learning. Environmental Science and Technology Letters, 2022, 9, 112-119.	3.9	65
25	The study on vertical variability of PM10 and the possible sources on a 220Âm tower, in Tianjin, China. Atmospheric Environment, 2011, 45, 6133-6140.	1.9	50
26	Chemical characterization and source apportionment of PM1 and PM2.5 in Tianjin, China: Impacts of biomass burning and primary biogenic sources. Journal of Environmental Sciences, 2021, 99, 196-209.	3.2	49
27	Chemical characteristic and toxicity assessment of particle associated PAHs for the short-term anthropogenic activity event: During the Chinese New Year's Festival in 2013. Science of the Total Environment, 2014, 482-483, 8-14.	3.9	48
28	Spatial, seasonal and diurnal patterns in physicochemical characteristics and sources of PM2.5 in both inland and coastal regions within a megacity in China. Journal of Hazardous Materials, 2018, 342, 139-149.	6.5	48
29	Effectiveness evaluation of temporary emission control action in 2016 in winter in Shijiazhuang, China. Atmospheric Chemistry and Physics, 2018, 18, 7019-7039.	1.9	46
30	Aerosols in an arid environment: The role of aerosol water content, particulate acidity, precursors, and relative humidity on secondary inorganic aerosols. Science of the Total Environment, 2019, 646, 564-572.	3.9	46
31	High-Resolution Data Sets Unravel the Effects of Sources and Meteorological Conditions on Nitrate and Its Gas-Particle Partitioning. Environmental Science & amp; Technology, 2019, 53, 3048-3057.	4.6	46
32	On the potential high acid deposition in northeastern China. Journal of Geophysical Research D: Atmospheres, 2013, 118, 4834-4846.	1.2	45
33	A refined source apportionment study of atmospheric PM2.5 during winter heating period in Shijiazhuang, China, using a receptor model coupled with a source-oriented model. Atmospheric Environment, 2020, 222, 117157.	1.9	43
34	PM2.5 source apportionment during severe haze episodes in a Chinese megacity based on a 5-month period by using hourly species measurements: Explore how to better conduct PMF during haze episodes. Atmospheric Environment, 2020, 224, 117364.	1.9	41
35	PM2.5 source profiles and relative heavy metal risk of ship emissions: Source samples from diverse ships, engines, and navigation processes. Atmospheric Environment, 2018, 191, 55-63.	1.9	40
36	Spring Festival and COVIDâ€19 Lockdown: Disentangling PM Sources in Major Chinese Cities. Geophysical Research Letters, 2021, 48, e2021GL093403.	1.5	40

#	Article	IF	CITATIONS
37	Air humidity affects secondary aerosol formation in different pathways. Science of the Total Environment, 2021, 759, 143540.	3.9	39
38	Changes in source contributions to particle number concentrations after the COVID-19 outbreak: Insights from a dispersion normalized PMF. Science of the Total Environment, 2021, 759, 143548.	3.9	39
39	Chemical and stable carbon isotopic characterization for PAHs in aerosol emitted from two indoor sources. Chemosphere, 2009, 75, 453-461.	4.2	37
40	Source-specific health risk assessment of PM2.5-bound heavy metals based on high time-resolved measurement in a Chinese megacity: insights into seasonal and diurnal variations. Ecotoxicology and Environmental Safety, 2021, 216, 112167.	2.9	37
41	Atmospheric metallic and arsenic pollution at an offshore drilling platform in the Bo Sea: A health risk assessment for the workers. Journal of Hazardous Materials, 2016, 304, 93-102.	6.5	35
42	Aerosol pH Dynamics During Haze Periods in an Urban Environment in China: Use of Detailed, Hourly, Speciated Observations to Study the Role of Ammonia Availability and Secondary Aerosol Formation and Urban Environment. Journal of Geophysical Research D: Atmospheres, 2019, 124, 9730-9742.	1.2	35
43	Multi-scale volatile organic compound (VOC) source apportionment in Tianjin, China, using a receptor model coupled with 1-hr resolution data. Environmental Pollution, 2020, 265, 115023.	3.7	35
44	Chemical characteristics and source apportionment of PM2.5 using PMF modelling coupled with 1-hr resolution online air pollutant dataset for Linfen, China. Environmental Pollution, 2020, 263, 114532.	3.7	35
45	Particulate matter mass and chemical component concentrations over four Chinese cities along the western Pacific coast. Environmental Science and Pollution Research, 2015, 22, 1940-1953.	2.7	34
46	Source Apportionment of Ambient Total Suspended Particulates and Coarse Particulate Matter in Urban Areas of Jiaozuo, China. Journal of the Air and Waste Management Association, 2007, 57, 561-575.	0.9	33
47	Chemical composition of precipitation and its sources in Hangzhou, China. Environmental Monitoring and Assessment, 2011, 183, 581-592.	1.3	33
48	Fine carbonaceous aerosol characteristics at a megacity during the Chinese Spring Festival as given by OC/EC online measurements. Atmospheric Research, 2016, 181, 20-28.	1.8	32
49	Source apportionment and a novel approach of estimating regional contributions to ambient PM2.5 in Haikou, China. Environmental Pollution, 2017, 223, 334-345.	3.7	32
50	Organic compound source profiles of PM2.5 from traffic emissions, coal combustion, industrial processes and dust. Chemosphere, 2021, 278, 130429.	4.2	32
51	Impacts of meteorology and precursor emission change on O3 variation in Tianjin, China from 2015 to 2021. Journal of Environmental Sciences, 2023, 126, 506-516.	3.2	32
52	Source-specific risks of synchronous heavy metals and PAHs in inhalable particles at different pollution levels: Variations and health risks during heavy pollution. Environment International, 2021, 146, 106162.	4.8	31
53	Multiply improved positive matrix factorization for source apportionment of volatile organic compounds during the COVID-19 shutdown in Tianjin, China. Environment International, 2022, 158, 106979.	4.8	31
54	Characterization and Spatial Source Apportionments of Ambient PM10 and PM2.5 during the Heating Period in Tian'jin, China. Aerosol and Air Quality Research, 2020, 20, 1-13.	0.9	30

#	Article	IF	CITATIONS
55	Mapping economic drivers of China's NOx emissions due to energy consumption. Journal of Cleaner Production, 2019, 241, 118130.	4.6	28
56	Sources-specific carcinogenicity and mutagenicity of PM2.5-bound PAHs in Beijing, China: Variations of contributions under diverse anthropogenic activities. Ecotoxicology and Environmental Safety, 2019, 183, 109552.	2.9	28
57	Alkanes and aliphatic carbonyl compounds in wintertime PM2.5 in Beijing, China. Atmospheric Environment, 2019, 202, 244-255.	1.9	28
58	Machine learning combined with the PMF model reveal the synergistic effects of sources and meteorological factors on PM2.5 pollution. Environmental Research, 2022, 212, 113322.	3.7	28
59	Source apportionment of ambient PM 10 and PM 2.5 in Haikou, China. Atmospheric Research, 2017, 190, 1-9.	1.8	26
60	Mass spectra features of biomass burning boiler and coal burning boiler emitted particles by single particle aerosol mass spectrometer. Science of the Total Environment, 2017, 598, 341-352.	3.9	26
61	Influence of the sampling period and time resolution on the PM source apportionment: Study based on the high time-resolution data and long-term daily data. Atmospheric Environment, 2017, 165, 301-309.	1.9	26
62	Source apportionment for fine particulate matter in a Chinese city using an improved gas-constrained method and comparison with multiple receptor models. Environmental Pollution, 2018, 233, 1058-1067.	3.7	25
63	Detailed Analysis of Estimated pH, Activity Coefficients, and Ion Concentrations between the Three Aerosol Thermodynamic Models. Environmental Science & Technology, 2019, 53, 8903-8913.	4.6	25
64	Haze episodes before and during the COVID-19 shutdown in Tianjin, China: Contribution of fireworks and residential burning. Environmental Pollution, 2021, 286, 117252.	3.7	25
65	Source apportionment of particle number concentrations: A global review. Science of the Total Environment, 2022, 819, 153104.	3.9	25
66	Source apportionment of synchronously size segregated fine and coarse particulate matter, using an improved three-way factor analysis model. Science of the Total Environment, 2015, 505, 1182-1190.	3.9	24
67	Spatial and temporal characteristics of PM 2.5 acidity during autumn in marine and coastal area of Bohai Sea, China, based on two-site contrast. Atmospheric Research, 2018, 202, 196-204.	1.8	24
68	Refined source apportionment of coal combustion sources by using single particle mass spectrometry. Science of the Total Environment, 2018, 627, 633-646.	3.9	24
69	Seasonal differences in formation processes of oxidized organic aerosol near Houston, TX. Atmospheric Chemistry and Physics, 2019, 19, 9641-9661.	1.9	24
70	Global review of source apportionment of volatile organic compounds based on highly time-resolved data from 2015 to 2021. Environment International, 2022, 165, 107330.	4.8	24
71	Secondary organic carbon quantification and source apportionment of PM10 in Kaifeng, China. Journal of Environmental Sciences, 2009, 21, 1353-1362.	3.2	23
72	Quantification of long-term primary and secondary source contributions to carbonaceous aerosols. Environmental Pollution, 2016, 219, 897-905.	3.7	23

#	Article	IF	CITATIONS
73	Source contributions to water-soluble organic carbon and water-insoluble organic carbon in PM2.5 during Spring Festival, heating and non-heating seasons. Ecotoxicology and Environmental Safety, 2018, 164, 172-180.	2.9	23
74	Estimating uncertainties of source contributions to PM2.5 using moving window evolving dispersion normalized PMF. Environmental Pollution, 2021, 286, 117576.	3.7	23
75	Targeting Atmospheric Oxidants Can Better Reduce Sulfate Aerosol in China: H ₂ O ₂ Aqueous Oxidation Pathway Dominates Sulfate Formation in Haze. Environmental Science & Technology, 2022, 56, 10608-10618.	4.6	23
76	Characteristics and sources of the fine carbonaceous aerosols in Haikou, China. Atmospheric Research, 2018, 199, 103-112.	1.8	22
77	Source profiles and contributions of biofuel combustion for PM2.5, PM10 and their compositions, in a city influenced by biofuel stoves. Chemosphere, 2017, 189, 255-264.	4.2	21
78	Comparison of size-resolved hygroscopic growth factors of urban aerosol by different methods in Tianjin during a haze episode. Science of the Total Environment, 2019, 678, 618-626.	3.9	21
79	Source directional apportionment of ambient PM2.5 in urban and industrial sites at a megacity in China. Atmospheric Research, 2020, 235, 104764.	1.8	21
80	Roles of RH, aerosol pH and sources in concentrations of secondary inorganic aerosols, during different pollution periods. Atmospheric Environment, 2020, 241, 117770.	1.9	21
81	Improving apportionment of PM2.5 using multisite PMF by constraining G-values with a prioriinformation. Science of the Total Environment, 2020, 736, 139657.	3.9	21
82	Review of online source apportionment research based on observation for ambient particulate matter. Science of the Total Environment, 2021, 762, 144095.	3.9	21
83	Implications for ozone control by understanding the survivor bias in observed ozone-volatile organic compounds system. Npj Climate and Atmospheric Science, 2022, 5, .	2.6	21
84	Source apportionment using receptor model based on aerosol mass spectra and 1â€h resolution chemical dataset in Tianjin, China. Atmospheric Environment, 2019, 198, 387-397.	1.9	20
85	Impact of meteorological condition changes on air quality and particulate chemical composition during the COVID-19 lockdown. Journal of Environmental Sciences, 2021, 109, 45-56.	3.2	20
86	Impact of sand and dust storms on the atmospheric environment and its source in Tianjin-China. Science of the Total Environment, 2022, 825, 153980.	3.9	20
87	Comparative study of PM10-bound heavy metals and PAHs during six years in a Chinese megacity: Compositions, sources, and source-specific risks. Ecotoxicology and Environmental Safety, 2019, 186, 109740.	2.9	19
88	Preparation of CeO2 novel sponge-like rods by emulsion liquid membrane system and its catalytic oxidation property. Materials Letters, 2009, 63, 1269-1271.	1.3	17
89	Further insights into the composition, source, and toxicity of PAHs in sizeâ€resolved particulate matter in a megacity in China. Environmental Toxicology and Chemistry, 2015, 34, 480-487.	2.2	17
90	The fractionation and geochemical characteristics of rare earth elements measured in ambient size-resolved PM in an integrated iron and steelmaking industry zone. Environmental Science and Pollution Research, 2016, 23, 17191-17199.	2.7	17

#	Article	IF	CITATIONS
91	Vertical characteristics and source identification of FM10 in Tianjin. Journal of Environmental Sciences, 2012, 24, 112-115.	3.2	16
92	Source apportionment for online dataset at a megacity in China using a new PTT-PMF model. Atmospheric Environment, 2020, 229, 117457.	1.9	16
93	Chemical characteristics and sources of ambient PM2.5 in a harbor area: Quantification of health risks to workers from source-specific selected toxic elements. Environmental Pollution, 2021, 268, 115926.	3.7	16
94	Source apportionment of PM2.5 using online and offline measurements of chemical components in Tianjin, China. Atmospheric Environment, 2021, 244, 117942.	1.9	16
95	Size distributions of source-specific risks of atmospheric heavy metals: An advanced method to quantify source contributions to size-segregated respiratory exposure. Journal of Hazardous Materials, 2021, 407, 124355.	6.5	16
96	Improving spatial resolution of soil fugitive dust emission inventory using RS-GIS technology: An application case in Tianjin, China. Atmospheric Environment, 2018, 191, 46-54.	1.9	15
97	Quantitatively analyzing effects of meteorology and PM2.5 sources on low visual distance. Science of the Total Environment, 2019, 659, 764-772.	3.9	15
98	Improved positive matrix factorization for source apportionment of volatile organic compounds in vehicular emissions during the Spring Festival in Tianjin, China. Environmental Pollution, 2022, 303, 119122.	3.7	15
99	Source Analysis of Particulate-Phase Polycyclic Aromatic Hydrocarbons in an Urban Atmosphere of a Northern City in China. Journal of the Air and Waste Management Association, 2007, 57, 164-171.	0.9	14
100	Local and long-range transport influences on PM 2.5 at a cities-cluster in northern China, during summer 2008. Particuology, 2014, 13, 66-72.	2.0	14
101	Atmospheric Signature and Potential Sources of Rare Earth Elements in Size-Resolved Particulate Matter in a Megacity of China. Aerosol and Air Quality Research, 2016, 16, 2085-2095.	0.9	13
102	A size-resolved chemical mass balance (SR-CMB) approach for source apportionment of ambient particulate matter by single element analysis. Atmospheric Environment, 2019, 197, 45-52.	1.9	13
103	Measurement report: Spatiotemporal and policy-related variations of PM _{2.5} composition and sources during 2015–2019 at multiple sites in a Chinese megacity. Atmospheric Chemistry and Physics, 2021, 21, 16219-16235.	1.9	13
104	Insight into the composition of organic compounds ( ≥  C _{6PM_{2.5} in wintertime in Beijing, China. Atmospheric Chemistry and Physics, 2019, 19, 10865-10881.}	np;gt;) in 1.9	12
105	Machine learning and theoretical analysis release the non-linear relationship among ozone, secondary organic aerosol and volatile organic compounds. Journal of Environmental Sciences, 2022, 114, 75-84.	3.2	12
106	An advanced three-way factor analysis model (SDABB model) for size-resolved PM source apportionment constrained by size distribution of chemical species in source profiles. Environmental Pollution, 2018, 242, 1606-1615.	3.7	11
107	Chemical, optical and radiative characteristics of aerosols during haze episodes of winter in the North China Plain. Atmospheric Environment, 2018, 181, 164-176.	1.9	10
108	Using High-Temporal-Resolution Ambient Data to Investigate Gas-Particle Partitioning of Ammonium over Different Seasons. Environmental Science & Technology, 2020, 54, 9834-9843.	4.6	10

#	Article	IF	CITATIONS
109	Size and chemical characteristics of particles emitted from typical rural biomass cookstoves in North China. Atmospheric Research, 2021, 249, 105295.	1.8	10
110	Health risks of inhaled selected toxic elements during the haze episodes in Shijiazhuang, China: Insight into critical risk sources. Environmental Pollution, 2021, 276, 116664.	3.7	10
111	Responses in PM2.5 and its chemical components to typical unfavorable meteorological events in the suburban area of Tianjin, China. Science of the Total Environment, 2021, 788, 147814.	3.9	10
112	Sizeâ^resolved source apportionment of particulate matter from a megacity in northern China based on one-year measurement of inorganic and organic components. Environmental Pollution, 2021, 289, 117932.	3.7	10
113	Application and validation of the fugitive dust source emission inventory compilation method in Xiong'an New Area, China. Science of the Total Environment, 2021, 798, 149114.	3.9	10
114	Dramatic changes in atmospheric pollution source contributions for a coastal megacity in northern China from 2011 to 2020. Atmospheric Chemistry and Physics, 2022, 22, 8597-8615.	1.9	10
115	Impact of Formation Pathways on Secondary Inorganic Aerosol During Haze Pollution in Beijing: Quantitative Evidence From Highâ€Resolution Observation and Modeling. Geophysical Research Letters, 2021, 48, .	1.5	9
116	Sources and uncertainties of health risks for PM2.5-bound heavy metals based on synchronous online and offline filter-based measurements in a Chinese megacity. Environment International, 2022, 164, 107236.	4.8	9
117	Size-Classified Variations in Carbonaceous Aerosols from Real Coal-Fired Boilers. Energy & Fuels, 2016, 30, 39-46.	2.5	8
118	The effect of atmospheric particulates on the rainwater chemistry in the Yangtze River Delta, China. Journal of the Air and Waste Management Association, 2019, 69, 1452-1466.	0.9	8
119	Quantifying the geographical distribution effect on decreasing aggregated nitrogen oxides intensity in the Chinese electrical generation system. Journal of Cleaner Production, 2019, 222, 856-864.	4.6	8
120	Nonlinear response of SIA to emission changes and chemical processes over eastern and central China during a heavy haze month. Science of the Total Environment, 2021, 788, 147747.	3.9	8
121	Uncovering temporal-spatial drivers of vehicular NOx emissions in China. Journal of Cleaner Production, 2021, 288, 125635.	4.6	7
122	Size distribution and chemical characteristics of particles from crop residue open burning in North China. Journal of Environmental Sciences, 2021, 109, 66-76.	3.2	7
123	Seasonal variation of dissolved bioaccessibility for potentially toxic elements in size-resolved PM: Impacts of bioaccessibility on inhalable risk and uncertainty. Environmental Pollution, 2022, 307, 119551.	3.7	7
124	Aliphatic carbonyl compounds (C ₈ –C ₂₆) in wintertime atmospheric aerosol in London, UK. Atmospheric Chemistry and Physics, 2019, 19, 2233-2246.	1.9	6
125	Optimized approach for developing soil fugitive dust emission inventory in "2+26" Chinese cities. Environmental Pollution, 2021, 285, 117521.	3.7	6
126	Application of the high spatiotemporal resolution soil fugitive dust emission inventory compilation method based on CAMx model. Atmospheric Research, 2021, 262, 105770.	1.8	6

#	Article	IF	CITATIONS
127	Potential Risks of PM2.5-Bound Polycyclic Aromatic Hydrocarbons and Heavy Metals from Inland and Marine Directions for a Marine Background Site in North China. Toxics, 2022, 10, 32.	1.6	6
128	Diesel vehicle emission accounts for the dominate NO source to atmospheric particulate nitrate in a coastal city: Insights from nitrate dual isotopes of PM2.5. Atmospheric Research, 2022, 278, 106328.	1.8	6
129	Quantification of source impact to PM using three-dimensional weighted factor model analysis on multi-site data. Atmospheric Environment, 2017, 160, 89-96.	1.9	5
130	Primary Carbonaceous Particle Emission from Four Power Plants with Ultralow Emission in China. ACS Omega, 2021, 6, 1309-1315.	1.6	5
131	Source apportionment of PM2.5 during different haze episodes by PMF and random forest method based on hourly measured atmospheric pollutant. Environmental Science and Pollution Research, 2021, 28, 66978-66989.	2.7	5
132	Potential health risks of inhaled toxic elements and risk sources during different COVID-19 lockdown stages in Linfen, China. Environmental Pollution, 2021, 284, 117454.	3.7	5
133	Preparation and structure of [bis(8-quinolyloxyethyl) ether · H3+O]3[La(NO3)6]. Polyhedron, 1996, 15, 3219-3223.	1.0	4
134	Determination of Buffering Capacity of Total Suspended Particle and Its Source Apportionment Using the Chemical Mass Balance Approach. Journal of the Air and Waste Management Association, 2011, 61, 7-13.	0.9	4
135	Source insights into the 11-h daytime and nighttime fine ambient particulate matter in China as well as the synthetic studies using the new Multilinear Engine 2-species ratios (ME2-SR) method. Journal of Environmental Management, 2016, 181, 304-311.	3.8	3
136	An estimation method for regional transport contributions from emission sources based on a high-mountain site: a case study in Zhumadian, China. Atmospheric Environment, 2021, 263, 118664.	1.9	3
137	Chemical Analysis of Particulate Matter in the Harvest Period in an Agricultural Region of Eastern China. Aerosol and Air Quality Research, 2017, 17, 2381-2389.	0.9	3
138	PMF-GAS Methods to Estimate Contributions of Sources and Oxygen for PM2.5, Based on Highly Time-Resolved PM2.5 Species and Gas Data. Aerosol and Air Quality Research, 2018, 18, 2956-2966.	0.9	3
139	Exploring the Sensitivity of Visibility to PM2.5 Mass Concentration and Relative Humidity for Different Aerosol Types. Atmosphere, 2022, 13, 471.	1.0	3
140	Evaluating the performance of chemical transport models for PM2.5 source apportionment: An integrated application of spectral analysis and grey incidence analysis. Science of the Total Environment, 2022, 837, 155781.	3.9	3
141	Size Distribution of Ambient Particulate Matter and Its Constituent Chemical Species Involving Saccharides During Early Summer in a Chinese Megacity. Frontiers in Environmental Science, 2021, 9, .	1.5	2
142	The Characteristics of Heavy Ozone Pollution Episodes and Identification of the Primary Driving Factors Using a Generalized Additive Model (GAM) in an Industrial Megacity of Northern China. Atmosphere, 2021, 12, 1517.	1.0	2
143	Smart Pollution Source Tracing via Gradient Tree Boosting Regression. , 2019, , .		1
144	Insight into the critical factors determining the particle number concentrations during summer at a megacity in China. Journal of Environmental Sciences, 2019, 75, 169-180.	3.2	1

#	Article	IF	CITATIONS
145	Seasonal variation and source apportionment of inorganic and organic components in PM2.5: influence of organic markers application on PMF source apportionment. Environmental Science and Pollution Research, 2022, 29, 79002-79015.	2.7	1