Emi K Nishimura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9599872/publications.pdf

Version: 2024-02-01

28 papers

3,773 citations

567281 15 h-index 27 g-index

29 all docs

29 docs citations

times ranked

29

4195 citing authors

#	Article	IF	CITATIONS
1	Mechanisms of Hair Graying: Incomplete Melanocyte Stem Cell Maintenance in the Niche. Science, 2005, 307, 720-724.	12.6	984
2	Dominant role of the niche in melanocyte stem-cell fate determination. Nature, 2002, 416, 854-860.	27.8	825
3	Genotoxic Stress Abrogates Renewal of Melanocyte Stem Cells by Triggering Their Differentiation. Cell, 2009, 137, 1088-1099.	28.9	325
4	Hair follicle aging is driven by transepidermal elimination of stem cells via COL17A1 proteolysis. Science, 2016, 351, aad4395.	12.6	265
5	Stem cell competition orchestrates skin homeostasis and ageing. Nature, 2019, 568, 344-350.	27.8	245
6	Melanocyte stem cells: a melanocyte reservoir in hair follicles for hair and skin pigmentation. Pigment Cell and Melanoma Research, 2011, 24, 401-410.	3.3	243
7	Hair Follicle Stem Cells Provide a Functional Niche for Melanocyte Stem Cells. Cell Stem Cell, 2011, 8, 177-187.	11.1	241
8	Key Roles for Transforming Growth Factor \hat{l}^2 in Melanocyte Stem Cell Maintenance. Cell Stem Cell, 2010, 6, 130-140.	11.1	197
9	p38α Activates Purine Metabolism to Initiate Hematopoietic Stem/Progenitor Cell Cycling in Response to Stress. Cell Stem Cell, 2016, 19, 192-204.	11.1	92
10	A melanocyte–melanoma precursor niche in sweat glands of volar skin. Pigment Cell and Melanoma Research, 2014, 27, 1039-1050.	3.3	58
11	Mutant ASXL1 induces age-related expansion of phenotypic hematopoietic stem cells through activation of Akt/mTOR pathway. Nature Communications, 2021, 12, 1826.	12.8	54
12	Obesity accelerates hair thinning by stem cell-centric converging mechanisms. Nature, 2021, 595, 266-271.	27.8	54
13	A novel mouse model demonstrates that oncogenic melanocyte stem cells engender melanoma resembling human disease. Nature Communications, 2019, 10, 5023.	12.8	51
14	Two clonal types of human skin fibroblasts with different potentials for proliferation and tissue remodeling ability. Journal of Dermatological Science, 2016, 82, 84-94.	1.9	20
15	Beclin 1 regulates recycling endosome and is required for skin development in mice. Communications Biology, 2019, 2, 37.	4.4	20
16	EGFR-mediated epidermal stem cell motility drives skin regeneration through COL17A1 proteolysis. Journal of Cell Biology, 2021, 220, .	5.2	18
17	Dynamic stem cell selection safeguards the genomic integrity of the epidermis. Developmental Cell, 2021, 56, 3309-3320.e5.	7.0	15
18	Distinct types of stem cell divisions determine organ regeneration and aging in hair follicles. Nature Aging, 2021, 1, 190-204.	11.6	11

#	Article	IF	CITATIONS
19	Intracrine activity involving NAD-dependent circadian steroidogenic activity governs age-associated meibomian gland dysfunction. Nature Aging, 2022, 2, 105-114.	11.6	11
20	IGF-1R deficiency in human keratinocytes disrupts epidermal homeostasis and stem cell maintenance. Journal of Dermatological Science, 2019, 94, 298-305.	1.9	10
21	Rotation is the primary motion of paired human epidermal keratinocytes. Journal of Dermatological Science, 2015, 79, 194-202.	1.9	8
22	Stem cell spreading dynamics intrinsically differentiate acral melanomas from nevi. Cell Reports, 2021, 36, 109492.	6.4	8
23	NUAK2 localization in normal skin and its expression in a variety of skin tumors with YAP. Journal of Dermatological Science, 2020, 97, 143-151.	1.9	6
24	Automated collective motion analysis validates human keratinocyte stem cell cultures. Scientific Reports, 2019, 9, 18725.	3.3	5
25	iNOS inhibits hair regeneration in obese diabetic (ob/ob) mice. Biochemical and Biophysical Research Communications, 2018, 501, 893-897.	2.1	4
26	Evaluation of the proliferative potential of skin keratinocytes and fibroblasts isolated from critical limb ischemia patients. Regenerative Therapy, 2020, 14, 222-226.	3.0	1
27	Mitf is required for T cell maturation by regulating dendritic cell homing to the thymus. Biochemical and Biophysical Research Communications, 2022, 596, 29-35.	2.1	1
28	Shin-Ichi Nishikawa MD, PhD. Pigment Cell and Melanoma Research, 2010, 23, 683-683.	3.3	0