Meifang Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9599299/publications.pdf Version: 2024-02-01

MEIEANC 7HII

#	Article	IF	CITATIONS
1	Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyvinylidene fluoride piezoelectric nanofibers. Nano Energy, 2015, 14, 226-235.	8.2	287
2	Hierarchical MnO2 nanowire/graphene hybrid fibers with excellent electrochemical performance for flexible solid-state supercapacitors. Journal of Power Sources, 2016, 306, 481-488.	4.0	246
3	Flexible all-solid-state asymmetric supercapacitor based on transition metal oxide nanorods/reduced graphene oxide hybrid fibers with high energy density. Carbon, 2017, 113, 151-158.	5.4	243
4	Scalable non-liquid-crystal spinning of locally aligned graphene fibers for high-performance wearable supercapacitors. Nano Energy, 2015, 15, 642-653.	8.2	172
5	Robust, hydrophilic graphene/cellulose nanocrystal fiber-based electrode with high capacitive performance and conductivity. Carbon, 2018, 127, 218-227.	5.4	143
6	Enhanced Power Output of a Triboelectric Nanogenerator Composed of Electrospun Nanofiber Mats Doped with Graphene Oxide. Scientific Reports, 2015, 5, 13942.	1.6	123
7	Bottom-Up Fabrication of Activated Carbon Fiber for All-Solid-State Supercapacitor with Excellent Electrochemical Performance. ACS Applied Materials & Interfaces, 2016, 8, 14622-14627.	4.0	117
8	A Route Toward Smart System Integration: From Fiber Design to Device Construction. Advanced Materials, 2020, 32, e1902301.	11.1	116
9	Smart fibers for energy conversion and storage. Chemical Society Reviews, 2021, 50, 7009-7061.	18.7	108
10	Conductive, tough, hydrophilic poly(vinyl alcohol)/graphene hybrid fibers for wearable supercapacitors. Journal of Power Sources, 2016, 319, 271-280.	4.0	105
11	Critical insight: challenges and requirements of fibre electrodes for wearable electrochemical energy storage. Energy and Environmental Science, 2019, 12, 2148-2160.	15.6	104
12	Fabric texture design for boosting the performance of a knitted washable textile triboelectric nanogenerator as wearable power. Nano Energy, 2019, 58, 375-383.	8.2	103
13	Ionic Liquidâ€Assisted Synthesis of TiO ₂ –Carbon Hybrid Nanostructures for Lithium″on Batteries. Advanced Functional Materials, 2016, 26, 1338-1346.	7.8	97
14	Three-Dimensional Porous Carbon Nanotubes/Reduced Graphene Oxide Fiber from Rapid Phase Separation for a High-Rate All-Solid-State Supercapacitor. ACS Applied Materials & Interfaces, 2019, 11, 9283-9290.	4.0	66
15	Synthesis and characterization of an environmentally friendly PHBV/PEG copolymer network as a phase change material. Science China Chemistry, 2013, 56, 716-723.	4.2	64
16	High-power triboelectric nanogenerator prepared from electrospun mats with spongy parenchyma-like structure. Nano Energy, 2017, 34, 69-75.	8.2	63
17	A biomimetic nanofiber-based triboelectric nanogenerator with an ultrahigh transfer charge density. Nano Energy, 2018, 48, 464-470.	8.2	63
18	Hierarchically porous carbon black/graphene hybrid fibers for high performance flexible supercapacitors. RSC Advances, 2016, 6, 50112-50118.	1.7	46

Meifang Zhu

#	Article	IF	CITATIONS
19	Perovskite Solar Fibers: Current Status, Issues and Challenges. Advanced Fiber Materials, 2019, 1, 101-125.	7.9	42
20	Scalable microgel spinning of a three-dimensional porous graphene fiber for high-performance flexible supercapacitors. Journal of Materials Chemistry A, 2020, 8, 25355-25362.	5.2	41
21	Ultrahigh line-capacity and flexible graphene/carbon nanotube/tin oxide fibers as sodium ion battery anodes. Energy Storage Materials, 2022, 48, 35-43.	9.5	40
22	Polyethylene glycol infused acid-etched halloysite nanotubes for melt-spun polyamide-based composite phase change fibers. Applied Clay Science, 2019, 182, 105249.	2.6	34
23	Hydrophobic SiO ₂ Electret Enhances the Performance of Poly(vinylidene fluoride) Nanofiber-Based Triboelectric Nanogenerator. Journal of Physical Chemistry C, 2016, 120, 26600-26608.	1.5	31
24	Highly flexible and shape-persistent graphene microtube and its application in supercapacitor. Carbon, 2018, 126, 419-425.	5.4	29
25	A simple inorganic hybrids strategy for graphene fibers fabrication with excellent electrochemical performance. Journal of Power Sources, 2020, 450, 227637.	4.0	29
26	Use of regenerated cellulose to direct hetero-assembly of nanoparticles with carbon nanotubes for producing flexible battery anodes. Journal of Materials Chemistry A, 2017, 5, 13944-13949.	5.2	28
27	Polyacrylic Acid Assisted Assembly of Oxide Particles and Carbon Nanotubes for Highâ€₽erformance Flexible Battery Anodes. Advanced Energy Materials, 2015, 5, 1401207.	10.2	27
28	Enhanced Piezoelectric Performance of Electrospun Polyvinylidene Fluoride Doped with Inorganic Salts. Macromolecular Materials and Engineering, 2017, 302, 1700214.	1.7	26
29	Melt Spinning of Low-Cost Activated Carbon Fiber with a Tunable Pore Structure for High-Performance Flexible Supercapacitors. ACS Applied Energy Materials, 2020, 3, 9360-9368.	2.5	25
30	Heterogeneous graphene/polypyrrole multilayered microtube with enhanced capacitance. Electrochimica Acta, 2019, 304, 378-385.	2.6	24
31	Lithium-ion battery fiber constructed by diverse-dimensional carbon nanomaterials. Journal of Materials Science, 2019, 54, 582-591.	1.7	20
32	Shape-stabilized phase change materials with high phase change enthalpy based on synthetic comb-like poly(acrylonitrile-co-ethylene glycol) for thermal management. Science China Chemistry, 2017, 60, 1450-1457.	4.2	19
33	Organic–Inorganic Hybrid Conductive Network to Enhance the Electrical Conductivity of Graphene-Hybridized Polymeric Fibers. Chemistry of Materials, 2022, 34, 2049-2058.	3.2	12
34	Heat induction in two-dimensional graphene–Fe ₃ O ₄ nanohybrids for magnetic hyperthermia applications with artificial neural network modeling. RSC Advances, 2021, 11, 21702-21715.	1.7	7
35	A sinusoidal alternating output of a triboelectric nanogenerator array with asymmetric-layer-based units. Nanoscale, 2018, 10, 13730-13736.	2.8	5
36	Fibrous aggregates: Amplifying aggregation-induced emission to boost health protection. Biomaterials, 2022, 287, 121666.	5.7	5

#	Article	IF	CITATIONS
37	Fiber Electronics Bring a New Generation of Acoustic Fabrics. Advanced Fiber Materials, 2022, 4, 321-323.	7.9	4
38	Fibers to power the future. Joule, 2021, 5, 2764-2765.	11.7	3