Nóra Frankl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9598986/publications.pdf

Version: 2024-02-01

8 papers	20 citations	3 h-index	2272923 4 g-index
9	9	9	7
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Embedding graphs in Euclidean space. Journal of Combinatorial Theory - Series A, 2020, 171, 105146.	0.8	6
2	Partitioning Edge-Colored Hypergraphs into Few Monochromatic Tight Cycles. SIAM Journal on Discrete Mathematics, 2020, 34, 1460-1471.	0.8	5
3	Partitioning Infinite Hypergraphs into Few Monochromatic Berge-Paths. Graphs and Combinatorics, 2020, 36, 437-444.	0.4	3
4	Embedding graphs in Euclidean space. Electronic Notes in Discrete Mathematics, 2017, 61, 475-481.	0.4	2
5	VC-saturated set systems. European Journal of Combinatorics, 2022, 104, 103528.	0.8	2
6	Coverings: Variations on a result of Rogers and on the Epsilon-net theorem of Haussler and Welzl. Discrete Mathematics, 2018, 341, 863-874.	0.7	1
7	A note on diameter-Ramsey sets. European Journal of Combinatorics, 2018, 71, 51-54.	0.8	1
8	Large Equilateral Sets in Subspaces of $\$$ ell _infty ^n $\$$ of Small Codimension. Discrete and Computational Geometry, 0 , , 1 .	0.6	0