
Alexander W W Langford-Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/959877/publications.pdf Version: 2024-02-01

Alexander W W

#	Article	IF	CITATIONS
1	Neuropathology in Mouse Models of Mucopolysaccharidosis Type I, IIIA and IIIB. PLoS ONE, 2012, 7, e35787.	1.1	148
2	Genistein Improves Neuropathology and Corrects Behaviour in a Mouse Model of Neurodegenerative Metabolic Disease. PLoS ONE, 2010, 5, e14192.	1.1	121
3	Neuroinflammation, mitochondrial defects and neurodegeneration in mucopolysaccharidosis III type C mouse model. Brain, 2015, 138, 336-355.	3.7	113
4	Myeloid/Microglial Driven Autologous Hematopoietic Stem Cell Gene Therapy Corrects a Neuronopathic Lysosomal Disease. Molecular Therapy, 2013, 21, 1938-1949.	3.7	96
5	Hematopoietic Stem Cell and Gene Therapy Corrects Primary Neuropathology and Behavior in Mucopolysaccharidosis IIIA Mice. Molecular Therapy, 2012, 20, 1610-1621.	3.7	94
6	Complementing the Sugar Code: Role of GAGs and Sialic Acid in Complement Regulation. Frontiers in Immunology, 2015, 6, 25.	2.2	74
7	Endothelial microparticles prevent lipidâ€induced endothelial damage <i>via</i> Akt/eNOS signaling and reduced oxidative stress. FASEB Journal, 2017, 31, 4636-4648.	0.2	71
8	Macrophage enzyme and reduced inflammation drive brain correction of mucopolysaccharidosis IIIB by stem cell gene therapy. Brain, 2018, 141, 99-116.	3.7	64
9	The Role of Complement in Age-Related Macular Degeneration: Heparan Sulphate, a ZIP Code for Complement Factor H?. Journal of Innate Immunity, 2014, 6, 407-416.	1.8	60
10	Endothelial Progenitor Cells: New Targets for Therapeutics for Inflammatory Conditions With High Cardiovascular Risk. Frontiers in Medicine, 2018, 5, 200.	1.2	38
11	The Interplay of SIRT1 and Wnt Signaling in Vascular Calcification. Frontiers in Cardiovascular Medicine, 2018, 5, 183.	1.1	34
12	Age and Smoking Related Changes in Metal Ion Levels in Human Lens: Implications for Cataract Formation. PLoS ONE, 2016, 11, e0147576.	1.1	32
13	Female Mucopolysaccharidosis IIIA Mice Exhibit Hyperactivity and a Reduced Sense of Danger in the Open Field Test. PLoS ONE, 2011, 6, e25717.	1.1	31
14	Hyperactive behaviour in the mouse model of mucopolysaccharidosis IIIB in the open field and home cage environments. Genes, Brain and Behavior, 2011, 10, 673-682.	1.1	25
15	QRISK3 improves detection of cardiovascular disease risk in patients with systemic lupus erythematosus. Lupus Science and Medicine, 2018, 5, e000272.	1.1	22
16	Diabetic endothelial colony forming cells have the potential for restoration with glycomimetics. Scientific Reports, 2019, 9, 2309.	1.6	19
17	Signal One and Two Blockade Are Both Critical for Non-Myeloablative Murine HSCT across a Major Histocompatibility Complex Barrier. PLoS ONE, 2013, 8, e77632.	1.1	5
18	364. Neurological Correction of Mucopolysaccharidosis IIIB Mice by Haematopoietic Stem Cell Gene Therapy. Molecular Therapy, 2016, 24, S146.	3.7	0