Ivana Sedenkov

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9598114/ivana-sedenkova-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

36 papers 1,932 19 36 g-index

36 2,096 avg, IF 4.54 L-index

#	Paper	IF	Citations
36	Comparison of carboxybetaine with sulfobetaine polyaspartamides: Nonfouling properties, hydrophilicity, cytotoxicity and model nanogelation in an inverse miniemulsion. <i>Journal of Applied Polymer Science</i> , 2022 , 139, 52099	2.9	O
35	Electrochemical deposition of highly hydrophobic perfluorinated polyaniline film for biosensor applications <i>RSC Advances</i> , 2021 , 11, 18852-18859	3.7	6
34	Role of dextran in stabilization of polypyrrole nanoparticles for photoacoustic imaging. <i>European Polymer Journal</i> , 2021 , 157, 110634	5.2	1
33	The First Stages of Chemical and Electrochemical Aniline Oxidation Spectroscopic Comparative Study. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 2091	2.6	5
32	Hydrogen Bonding as a Tool to Control Chain Structure of PEDOT: Electrochemical Synthesis in the Presence of Different Electrolytes. <i>Macromolecules</i> , 2020 , 53, 2464-2473	5.5	4
31	Poly(p-phenylenediamine)/maghemite composite as highly effective adsorbent for anionic dye removal. <i>Reactive and Functional Polymers</i> , 2020 , 146, 104436	4.6	8
30	Polypyrrole nanoparticles: control of the size and morphology. <i>Journal of Polymer Research</i> , 2020 , 27, 1	2.7	1
29	Methyl red dye in the tuning of polypyrrole conductivity. <i>Polymer</i> , 2020 , 207, 122854	3.9	8
28	Method of Preparation of Soluble PEDOT: Self-Polymerization of EDOT without Oxidant at Room Temperature. <i>Macromolecular Chemistry and Physics</i> , 2020 , 221, 2000219	2.6	6
27	Tubes for detection of cholinesterase inhibitors-Unique effects of Neusilin on the stability of butyrylcholinesterase-impregnated carriers. <i>Enzyme and Microbial Technology</i> , 2019 , 128, 26-33	3.8	5
26	Electrochemical properties of lignin/polypyrrole composites and their carbonized analogues. <i>Materials Chemistry and Physics</i> , 2018 , 213, 352-361	4.4	24
25	Plasmonic Screening Effect of Gold Nanoparticles Array on Light Absorption in Poly(3-hexyl)Thiophene Thin Film. <i>Journal of Nanoscience and Nanotechnology</i> , 2018 , 18, 1164-1168	1.3	
24	Interaction of polyaniline film with dibutyl phosphonate versus phosphite: Enhanced thermal stability. <i>Polymer Degradation and Stability</i> , 2016 , 134, 357-365	4.7	10
23	Catalytic activity of polypyrrole nanotubes decorated with noble-metal nanoparticles and their conversion to carbonized analogues. <i>Synthetic Metals</i> , 2016 , 214, 14-22	3.6	53
22	The composites of silver with globular or nanotubular polypyrrole: The control of silver content. <i>Synthetic Metals</i> , 2015 , 209, 105-111	3.6	26
21	Alternating ring-opening copolymerization of cyclohexene oxide with phthalic anhydride catalyzed by iron(III) salen complexes. <i>Macromolecular Research</i> , 2015 , 23, 161-166	1.9	34
20	Coaxial conducting polymer nanotubes: polypyrrole nanotubes coated with polyaniline or poly(p-phenylenediamine) and products of their carbonisation. <i>Chemical Papers</i> , 2015 , 69,	1.9	15

(2006-2015)

19	The deposition of globular polypyrrole and polypyrrole nanotubes on cotton textile. <i>Applied Surface Science</i> , 2015 , 356, 737-741	6.7	39
18	Conducting polymer and ionic liquid: Improved thermal stability of the material IA spectroscopic study. <i>Polymer Degradation and Stability</i> , 2014 , 109, 27-32	4.7	12
17	In Situ Infrared Spectroscopy of Oligoaniline Intermediates Created under Alkaline Conditions. Journal of Physical Chemistry B, 2014 , 118, 14972-81	3.4	6
16	Chemical degradation of polyaniline by reaction with Fenton reagent a spectroelectrochemical study. <i>Chemical Papers</i> , 2013 , 67,	1.9	3
15	Study of carbon black obtained by pyrolysis of waste scrap tyres. <i>Journal of Thermal Analysis and Calorimetry</i> , 2013 , 111, 1475-1481	4.1	22
14	Characterizing crystal disorder of trospium chloride: a comprehensive,(13) C CP/MAS NMR, DSC, FTIR, and XRPD study. <i>Journal of Pharmaceutical Sciences</i> , 2013 , 102, 1235-48	3.9	14
13	Characterization of solid polymer dispersions of active pharmaceutical ingredients by 19F MAS NMR and factor analysis. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2013 , 100, 59-66	4.4	23
12	Spectroscopy of thin polyaniline films deposited during chemical oxidation of aniline. <i>Chemical Papers</i> , 2012 , 66,	1.9	111
11	Solid-state oxidation of aniline hydrochloride with various oxidants. <i>Synthetic Metals</i> , 2011 , 161, 1353-7	1366	24
10	New perspectives of 19F MAS NMR in the characterization of amorphous forms of atorvastatin in dosage formulations. <i>International Journal of Pharmaceutics</i> , 2011 , 409, 62-74	6.5	49
9	Structure and stability of thin polyaniline films deposited in situ on silicon and gold during precipitation and dispersion polymerization of aniline hydrochloride. <i>Thin Solid Films</i> , 2011 , 519, 5933-5	59 21 2	50
8	Mixed electron and proton conductivity of polyaniline films in aqueous solutions of acids: beyond the 1000 S cmal limit. <i>Polymer International</i> , 2009 , 58, 872-879	3.3	63
7	Solid-state reduction of silver nitrate with polyaniline base leading to conducting materials. <i>ACS Applied Materials & Applied & Applie</i>	9.5	36
6	Conformational transition in polyaniline films Espectroscopic and conductivity studies of ageing. <i>Polymer Degradation and Stability</i> , 2008 , 93, 428-435	4.7	57
5	Thermal degradation of polyaniline films prepared in solutions of strong and weak acids and in water IFTIR and Raman spectroscopic studies. <i>Polymer Degradation and Stability</i> , 2008 , 93, 2147-2157	4.7	186
4	Evolution of polyaniline nanotubes: the oxidation of aniline in water. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 9461-8	3.4	391
3	Polyaniline nanotubes: conditions of formation. <i>Polymer International</i> , 2006 , 55, 31-39	3.3	253
2	In-situ polymerized polyaniline films. Preparation in solutions of hydrochloric, sulfuric, or phosphoric acid. <i>Thin Solid Films</i> , 2006 , 515, 1640-1646	2.2	93

FTIR spectroscopic and conductivity study of the thermal degradation of polyaniline films. *Polymer Degradation and Stability*, **2004**, 86, 179-185

4.7 294