List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/959762/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Autocrine vitamin D signaling switches off pro-inflammatory programs of TH1 cells. Nature Immunology, 2022, 23, 62-74.	7.0	105
2	Treatment of STAT3-deficient hyper–immunoglobulin E syndrome with monoclonal antibodies targeting allergic inflammation. Journal of Allergy and Clinical Immunology: in Practice, 2022, 10, 1367-1370.e1.	2.0	8
3	Targeted IL-4Rα blockade ameliorates refractory allergic eosinophilic inflammation in a patient with dysregulated TGF-β signaling due to ERBIN deficiency. Journal of Allergy and Clinical Immunology: in Practice, 2022, 10, 1903-1906.	2.0	5
4	Malignancy in STAT3 Deficient Hyper IgE Syndrome. Journal of Clinical Immunology, 2022, , 1.	2.0	4
5	Eosinophilia Associated With Immune Deficiency. Journal of Allergy and Clinical Immunology: in Practice, 2022, 10, 1140-1153.	2.0	5
6	Supporting Careers of Women in Clinical Immunology: From Conceptualization to Implementation. Frontiers in Pediatrics, 2022, 10, 864734.	0.9	1
7	Congenital iRHOM2 deficiency causes ADAM17 dysfunction and environmentally directed immunodysregulatory disease. Nature Immunology, 2022, 23, 75-85.	7.0	3
8	Cerebral aneurysm in three pediatric patients with STAT1 gain-of-function mutations. Journal of Neurology, 2022, 269, 5638-5642.	1.8	3
9	Tip of the iceberg: A comprehensive review of liver disease in Inborn errors of immunity. Hepatology, 2022, 76, 1845-1861.	3.6	4
10	Ex vivo effect of JAK inhibition on JAK-STAT1 pathway hyperactivation in patients with dominant-negative STAT3 mutations. Journal of Clinical Immunology, 2022, 42, 1193-1204.	2.0	8
11	Efficacy of Cochleated Amphotericin B in Mouse and Human Mucocutaneous Candidiasis. Antimicrobial Agents and Chemotherapy, 2022, 66, .	1.4	9
12	Lupus-like autoimmunity and increased interferon response in patients with STAT3-deficient hyper-IgE syndrome. Journal of Allergy and Clinical Immunology, 2021, 147, 746-749.e9.	1.5	16
13	Coronavirus disease 2019 in patients with inborn errors of immunity: An international study. Journal of Allergy and Clinical Immunology, 2021, 147, 520-531.	1.5	278
14	Daratumumab for delayed <scp>RBC</scp> engraftment following major <scp>ABO</scp> mismatched haploidentical bone marrow transplantation. Transfusion, 2021, 61, 1041-1046.	0.8	5
15	Differential responses to folic acid in an established keloid fibroblast cell line are mediated by JAK1/2 and STAT3. PLoS ONE, 2021, 16, e0248011.	1.1	7
16	Characterization of autoantibodies, immunophenotype and autoimmune disease in a prospective cohort of patients with idiopathic CD4 lymphocytopenia. Clinical Immunology, 2021, 224, 108664.	1.4	5
17	<i>SASH3</i> variants cause a novel form of X-linked combined immunodeficiency with immune dysregulation. Blood, 2021, 138, 1019-1033.	0.6	28
18	STAT3 Hyper-IgE Syndrome—an Update and Unanswered Questions. Journal of Clinical Immunology, 2021, 41, 864-880.	2.0	63

#	Article	IF	CITATIONS
19	Pulmonary Manifestations of GATA2 Deficiency. Chest, 2021, 160, 1350-1359.	0.4	21
20	Biochemically deleterious human <i>NFKB1</i> variants underlie an autosomal dominant form of common variable immunodeficiency. Journal of Experimental Medicine, 2021, 218, .	4.2	32
21	Antibody responses to the SARS-CoV-2 vaccine in individuals with various inborn errors of immunity. Journal of Allergy and Clinical Immunology, 2021, 148, 1192-1197.	1.5	67
22	An Unusual Pattern of Premature Cervical Spine Degeneration in STAT3-LOF. Journal of Clinical Immunology, 2021, 41, 576-584.	2.0	7
23	Prospective Study of a Novel, Radiation-Free, Reduced-Intensity Bone Marrow Transplantation Platform for Primary Immunodeficiency Diseases. Biology of Blood and Marrow Transplantation, 2020, 26, 94-106.	2.0	28
24	Hematopoietic Stem Cell Transplantation and Vasculopathy Associated With STAT3-Dominant-Negative Hyper-IgE Syndrome. Frontiers in Pediatrics, 2020, 8, 575.	0.9	7
25	Migration-induced cell shattering due to DOCK8 deficiency causes a type 2–biased helper T cell response. Nature Immunology, 2020, 21, 1528-1539.	7.0	21
26	Obstetric and Gynecological Care in Patients with STAT3-Deficient Hyper IgE Syndrome. Journal of Clinical Immunology, 2020, 40, 1048-1050.	2.0	4
27	Dominant-negative mutations in human <i>IL6ST</i> underlie hyper-IgE syndrome. Journal of Experimental Medicine, 2020, 217, .	4.2	64
28	Spontaneous Gastrointestinal Perforations in STAT3-Deficient Hyper-IgE Syndrome. Journal of Clinical Immunology, 2020, 40, 1199-1203.	2.0	4
29	The Child with Elevated IgE and Infection Susceptibility. Current Allergy and Asthma Reports, 2020, 20, 65.	2.4	11
30	Artificial thymic organoids represent a reliable tool to study T-cell differentiation in patients with severe T-cell lymphopenia. Blood Advances, 2020, 4, 2611-2616.	2.5	65
31	Cryptosporidium infection in dedicator of cytokinesis 8 (DOCK 8) deficiency. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 3663-3666.e1.	2.0	6
32	STAT3 modulates reprogramming efficiency of human somatic cells; Insights from autosomal dominant Hyper IgE syndrome caused by STAT3 mutations. Biology Open, 2020, 9, .	0.6	3
33	Prevention and management of infections. , 2020, , 1113-1127.		0
34	Targeted therapy guided by single-cell transcriptomic analysis in drug-induced hypersensitivity syndrome: a case report. Nature Medicine, 2020, 26, 236-243.	15.2	107
35	Characterization of the clinical and immunologic phenotype and management of 157 individuals with 56 distinct heterozygous NFKB1 mutations. Journal of Allergy and Clinical Immunology, 2020, 146, 901-911.	1.5	78
36	Tissue specific diversification, virulence and immune response to <i>Mycobacterium bovis</i> BCG in a patient with an IFN-Î3 R1 deficiency. Virulence, 2020, 11, 1656-1673.	1.8	5

#	Article	IF	CITATIONS
37	Evaluation of Genotypic Antiviral Resistance Testing as an Alternative to Phenotypic Testing in a Patient with DOCK8 Deficiency and Severe HSV-1 Disease. Journal of Infectious Diseases, 2020, 221, 2035-2042.	1.9	9
38	Impaired angiogenesis and extracellular matrix metabolism in autosomal-dominant hyper-IgE syndrome. Journal of Clinical Investigation, 2020, 130, 4167-4181.	3.9	13
39	Autosomal Dominant Hyper IgE Syndrome. , 2020, , 31-38.		7
40	Human TH9 differentiation is dependent on signal transducer and activator of transcription (STAT) 3 to restrain STAT1-mediated inhibition. Journal of Allergy and Clinical Immunology, 2019, 143, 1108-1118.e4.	1.5	10
41	STAT1 Gain-of-Function Mutations Cause High Total STAT1 Levels With Normal Dephosphorylation. Frontiers in Immunology, 2019, 10, 1433.	2.2	41
42	Compound Heterozygous DOCK8 Mutations in a Patient with B Lymphoblastic Leukemia and EBV-Associated Diffuse Large B Cell Lymphoma. Journal of Clinical Immunology, 2019, 39, 592-595.	2.0	10
43	Generation of human induced pluripotent stem cell lines (NIHTVBi011-A, NIHTVBi012-A, NIHTVBi013-A) from autosomal dominant Hyper IgE syndrome (AD-HIES) patients carrying STAT3 mutation. Stem Cell Research, 2019, 41, 101586.	0.3	5
44	Mycobacteria-Specific T Cells May Be Expanded From Healthy Donors and Are Near Absent in Primary Immunodeficiency Disorders. Frontiers in Immunology, 2019, 10, 621.	2.2	4
45	Tandem Orthotopic Living Donor Liver Transplantation Followed by Same Donor Haploidentical Hematopoietic Stem Cell Transplantation for DOCK8 Deficiency. Transplantation, 2019, 103, 2144-2149.	0.5	9
46	IL-21/type l interferon interplay regulates neutrophil-dependent innate immune responses to Staphylococcus aureus. ELife, 2019, 8, .	2.8	14
47	Infections in the Immunocompromised Host. , 2019, , 523-534.e1.		1
48	Hematopoietic Stem Cell Transplantation as Treatment for Patients with DOCK8 Deficiency. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 848-855.	2.0	67
49	Insights into immunity from clinical and basic science studies of <scp>DOCK</scp> 8 immunodeficiency syndrome. Immunological Reviews, 2019, 287, 9-19.	2.8	52
50	An Update on Syndromes with a Hyper-IgE Phenotype. Immunology and Allergy Clinics of North America, 2019, 39, 49-61.	0.7	63
51	Loss-of-function mutations in caspase recruitment domain-containing protein 14 (CARD14) are associated with a severe variant of atopic dermatitis. Journal of Allergy and Clinical Immunology, 2019, 143, 173-181.e10.	1.5	60
52	Hypomorphic caspase activation and recruitment domain 11 (CARD11) mutations associated with diverse immunologic phenotypes with or without atopic disease. Journal of Allergy and Clinical Immunology, 2019, 143, 1482-1495.	1.5	116
53	Hematopoietic stem cell transplant effectively rescues lymphocyte differentiation and function in DOCK8-deficient patients. JCI Insight, 2019, 4, .	2.3	23
54	Ruxolitinib partially reverses functional natural killer cell deficiency in patients with signal transducer and activator of transcription 1 (STAT1) gain-of-function mutations. Journal of Allergy and Clinical Immunology, 2018, 141, 2142-2155.e5.	1.5	79

#	Article	IF	CITATIONS
55	Autosomal Dominant Hyper-IgE Syndrome in the USIDNET Registry. Journal of Allergy and Clinical Immunology: in Practice, 2018, 6, 996-1001.	2.0	62
56	Expanded skin virome in DOCK8-deficient patients. Nature Medicine, 2018, 24, 1815-1821.	15.2	104
57	Hematopoietic Stem Cell Transplantation in Primary Immunodeficiencies Beyond Severe Combined Immunodeficiency. Journal of the Pediatric Infectious Diseases Society, 2018, 7, S79-S82.	0.6	10
58	STAT1 and STAT3 mutations: important lessons for clinical immunologists. Expert Review of Clinical Immunology, 2018, 14, 1029-1041.	1.3	49
59	Autosomal Dominant Hyper IgE Syndrome. , 2018, , 1-7.		1
60	Warts and DADA2: a Mere Coincidence?. Journal of Clinical Immunology, 2018, 38, 836-843.	2.0	23
61	A dysbiotic microbiome triggers T _H 17 cells to mediate oral mucosal immunopathology in mice and humans. Science Translational Medicine, 2018, 10, .	5.8	249
62	Jakinibs for the treatment of immune dysregulation in patients with gain-of-function signal transducer and activator of transcription 1 (STAT1) or STAT3 mutations. Journal of Allergy and Clinical Immunology, 2018, 142, 1665-1669.	1.5	196
63	Aspergillosis, eosinophilic esophagitis, and allergic rhinitis in signal transducer and activator of transcription 3 haploinsufficiency. Journal of Allergy and Clinical Immunology, 2018, 142, 993-997.e3.	1.5	19
64	Severe BCG-osis Misdiagnosed as Multidrug-Resistant Tuberculosis in an IL-12Rβ1-Deficient Peruvian Girl. Journal of Clinical Immunology, 2018, 38, 712-716.	2.0	8
65	TNF overproduction impairs epithelial staphylococcal response in hyper IgE syndrome. Journal of Clinical Investigation, 2018, 128, 3595-3604.	3.9	28
66	Clonally expanded Î ³ δT cells protect against Staphylococcus aureus skin reinfection. Journal of Clinical Investigation, 2018, 128, 1026-1042.	3.9	98
67	IL-10 Indirectly Downregulates IL-4–Induced IgE Production by Human B Cells. ImmunoHorizons, 2018, 2, 398-406.	0.8	28
68	ERBIN deficiency links STAT3 and TGF-β pathway defects with atopy in humans. Journal of Experimental Medicine, 2017, 214, 669-680.	4.2	70
69	Coronary atherosclerosis and dilation in hyper IgE syndrome patients: Depiction by magnetic resonance vessel wall imaging and pathological correlation. Atherosclerosis, 2017, 258, 20-25.	0.4	18
70	Current Status of Dedicator of Cytokinesis-Associated Immunodeficiency. Dermatologic Clinics, 2017, 35, 11-19.	1.0	18
71	Haploidentical Related Donor Hematopoietic Stem Cell Transplantation for Dedicator-of-Cytokinesis 8 Deficiency Using Post-Transplantation Cyclophosphamide. Biology of Blood and Marrow Transplantation, 2017, 23, 980-990.	2.0	39
72	Gastrointestinal Manifestations of STAT3-Deficient Hyper-IgE Syndrome. Journal of Clinical Immunology, 2017, 37, 695-700.	2.0	52

#	Article	IF	CITATIONS
73	PD-L1 up-regulation restrains Th17 cell differentiation in <i>STAT3</i> loss- and <i>STAT1</i> gain-of-function patients. Journal of Experimental Medicine, 2017, 214, 2523-2533.	4.2	55
74	A biallelic mutation in <i>IL6ST</i> encoding the GP130 co-receptor causes immunodeficiency and craniosynostosis. Journal of Experimental Medicine, 2017, 214, 2547-2562.	4.2	158
75	Emerging Infections and Pertinent Infections Related to Travel for Patients with Primary Immunodeficiencies. Journal of Clinical Immunology, 2017, 37, 650-692.	2.0	6
76	Risks of Ruxolitinib in STAT1 Gain-of-Function-Associated Severe Fungal Disease. Open Forum Infectious Diseases, 2017, 4, ofx202.	0.4	56
77	Molecular Typing of Staphylococcus aureus Isolated from Patients with Autosomal Dominant Hyper IgE Syndrome. Pathogens, 2017, 6, 23.	1.2	11
78	Protein stabilization improves STAT3 function in autosomal dominant hyper-IgE syndrome. Blood, 2016, 128, 3061-3072.	0.6	28
79	Persistent nodal histoplasmosis in nuclear factor kappa B essential modulator deficiency: Report of a case and review of infection in primary immunodeficiencies. Journal of Allergy and Clinical Immunology, 2016, 138, 903-905.	1.5	14
80	Haploidentical related donor hematopoietic stem cell transplantation withÂpost-transplantation cyclophosphamide for DOCK8 deficiency. Journal of Allergy and Clinical Immunology: in Practice, 2016, 4, 1239-1242.e1.	2.0	16
81	Hyper-IgE Syndromes and the Lung. Clinics in Chest Medicine, 2016, 37, 557-567.	0.8	58
82	Distinct mutations at the same positions of STAT3 cause either loss or gain of function. Journal of Allergy and Clinical Immunology, 2016, 138, 1222-1224.e2.	1.5	23
83	Progressive Multifocal Leukoencephalopathy in Primary Immune Deficiencies: Stat1 Gain of Function and Review of the Literature. Clinical Infectious Diseases, 2016, 62, 986-994.	2.9	59
84	Diminution of signal transducer and activator of transcription 3 signaling inhibits vascular permeability and anaphylaxis. Journal of Allergy and Clinical Immunology, 2016, 138, 187-199.	1.5	56
85	Extrapulmonary Aspergillus infection in patients with CARD9 deficiency. JCI Insight, 2016, 1, e89890.	2.3	141
86	The extended clinical phenotype of 64 patients with dedicator of cytokinesis 8 deficiency. Journal of Allergy and Clinical Immunology, 2015, 136, 402-412.	1.5	163
87	DOCK8 Deficiency: Clinical and Immunological Phenotype and Treatment Options - a Review of 136 Patients. Journal of Clinical Immunology, 2015, 35, 189-198.	2.0	284
88	Common Severe Infections in Chronic Granulomatous Disease. Clinical Infectious Diseases, 2015, 60, 1176-1183.	2.9	323
89	Matched Related and Unrelated Donor Hematopoietic Stem Cell Transplantation for DOCK8 Deficiency. Biology of Blood and Marrow Transplantation, 2015, 21, 1037-1045.	2.0	45
90	Eosinophilia Associated with Disorders of Immune Deficiency or Immune Dysregulation. Immunology and Allergy Clinics of North America, 2015, 35, 523-544.	0.7	48

#	Article	IF	CITATIONS
91	STAT3 is a critical cell-intrinsic regulator of human unconventional T cell numbers and function. Journal of Experimental Medicine, 2015, 212, 855-864.	4.2	70
92	WU Polyomavirus in Respiratory Epithelial Cells from Lung Transplant Patient with Job Syndrome. Emerging Infectious Diseases, 2015, 21, 103-106.	2.0	21
93	Primary immunodeficiency update. Journal of the American Academy of Dermatology, 2015, 73, 355-364.	0.6	34
94	Primary immunodeficiency update. Journal of the American Academy of Dermatology, 2015, 73, 367-381.	0.6	26
95	Endemic mycoses in patients with STAT3-mutated hyper-IgE (Job) syndrome. Journal of Allergy and Clinical Immunology, 2015, 136, 1411-1413.e2.	1.5	63
96	Haploidentical Transplantation for DOCK8 Deficiency. Blood, 2015, 126, 2229-2229.	0.6	3
97	Prevention and Management of Infections. , 2014, , 919-929.		2
98	DOCK8 regulates lymphocyte shape integrity for skin antiviral immunity. Journal of Experimental Medicine, 2014, 211, 2549-2566.	4.2	150
99	Autosomal recessive phosphoglucomutase 3 (PGM3) mutations link glycosylation defects to atopy, immune deficiency, autoimmunity, and neurocognitive impairment. Journal of Allergy and Clinical Immunology, 2014, 133, 1400-1409.e5.	1.5	193
100	Bone Density and Fractures in Autosomal Dominant Hyper IgE Syndrome. Journal of Clinical Immunology, 2014, 34, 260-264.	2.0	28
101	Somatic reversion in dedicator of cytokinesis 8 immunodeficiency modulates disease phenotype. Journal of Allergy and Clinical Immunology, 2014, 133, 1667-1675.	1.5	82
102	Transcription of the activating receptor NKG2D in natural killer cells is regulated by STAT3 tyrosine phosphorylation. Blood, 2014, 124, 403-411.	0.6	63
103	Lung Parenchyma Surgery in Autosomal Dominant Hyper-IgE Syndrome. Journal of Clinical Immunology, 2013, 33, 896-902.	2.0	39
104	Safety of Major Abdominal Surgical Procedures in Patients with Hyperimmunoglobulinemia E (Job's) Tj ETQq	0 0 0 rgBT	Oyerlock 10
105	The altered landscape of the human skin microbiome in patients with primary immunodeficiencies. Genome Research, 2013, 23, 2103-2114.	2.4	236
106	Neurobehavioral Profiles in Individuals with Hyperimmunoglobulin E Syndrome (HIES) and Brain White Matter Hyperintensities. Journal of Clinical Immunology, 2013, 33, 1175-1184.	2.0	5
107	Diminished allergic disease in patients with STAT3 mutations reveals a role for STAT3 signaling in mast cellÂdegranulation. Journal of Allergy and Clinical Immunology, 2013, 132, 1388-1396.e3.	1.5	102
108	Defective actin accumulation impairs human natural killer cell function in patients with dedicator of cytokinesis 8 deficiency. Journal of Allergy and Clinical Immunology, 2013, 131, 840-848.	1.5	113

#	Article	IF	CITATIONS
109	Intermediate phenotypes in patients with autosomal dominant hyper-IgE syndrome caused by somatic mosaicism. Journal of Allergy and Clinical Immunology, 2013, 131, 1586-1593.	1.5	50
110	Dominant gain-of-function STAT1 mutations in FOXP3 wild-type immune dysregulation–polyendocrinopathy–enteropathy–X-linked–like syndrome. Journal of Allergy and Clinical Immunology, 2013, 131, 1611-1623.e3.	1.5	288
111	The use of 14C-FIAU to predict bacterial thymidine kinase presence: Implications for radiolabeled FIAU bacterial imaging. Nuclear Medicine and Biology, 2013, 40, 638-642.	0.3	15
112	DOCK8 is critical for the survival and function of NKT cells. Blood, 2013, 122, 2052-2061.	0.6	68
113	Infections in the immunocompromised host. , 2013, , 391-404.		2
114	Cutaneous Manifestations of <emph type="ital">DOCK8</emph> Deficiency Syndrome. Archives of Dermatology, 2012, 148, 79.	1.7	129
115	Genetic Causes of Bronchiectasis. Clinics in Chest Medicine, 2012, 33, 249-263.	0.8	13
116	An update on the hyper-IgE syndromes. Arthritis Research and Therapy, 2012, 14, 228.	1.6	126
117	Hyperâ€lgE syndrome update. Annals of the New York Academy of Sciences, 2012, 1250, 25-32.	1.8	135
118	Plasma metalloproteinase levels are dysregulated in signal transducer and activator of transcription 3 mutated hyper-IgE syndrome. Journal of Allergy and Clinical Immunology, 2011, 128, 1124-1127.	1.5	32
119	Mutations in GATA2 are associated with the autosomal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC) syndrome. Blood, 2011, 118, 2653-2655.	0.6	572
120	A Critical Role for STAT3 Transcription Factor Signaling in the Development and Maintenance of Human T Cell Memory. Immunity, 2011, 35, 806-818.	6.6	241
121	Paucity of genotype–phenotype correlations in STAT3 mutation positive Hyper IgE Syndrome (HIES). Clinical Immunology, 2011, 139, 75-84.	1.4	39
122	Coronary Artery Abnormalities in Hyper-IgE Syndrome. Journal of Clinical Immunology, 2011, 31, 338-345.	2.0	64
123	Fungal Infections in Phagocytic Defects. Current Fungal Infection Reports, 2011, 5, 245-251.	0.9	Ο
124	DOCK8 is essential for Tâ€cell survival and the maintenance of CD8 ⁺ Tâ€cell memory. European Journal of Immunology, 2011, 41, 3423-3435.	1.6	105
125	Diverticulitis in a Young Man with Hyper-IgE Syndrome. Southern Medical Journal, 2010, 103, 1261-1263.	0.3	6
126	Pathogenesis of Hyper IgE Syndrome. Clinical Reviews in Allergy and Immunology, 2010, 38, 32-38.	2.9	78

8

#	Article	IF	CITATIONS
127	Mutations in STAT3 and diagnostic guidelines for hyper-IgE syndrome. Journal of Allergy and Clinical Immunology, 2010, 125, 424-432.e8.	1.5	247
128	Invasive fungal disease in autosomal-dominant hyper-IgE syndrome. Journal of Allergy and Clinical Immunology, 2010, 125, 1389-1390.	1.5	91
129	Clinical Manifestations of Hyper IgE Syndromes. Disease Markers, 2010, 29, 123-130.	0.6	76
130	Clinical manifestations of hyper IgE syndromes. Disease Markers, 2010, 29, 123-30.	0.6	57
131	Coronary Abnormalities in Hyper-IgE Recurrent Infection Syndrome: Depiction at Coronary MDCT Angiography. American Journal of Roentgenology, 2009, 193, W478-W481.	1.0	16
132	Combined Immunodeficiency Associated with <i>DOCK8</i> Mutations. New England Journal of Medicine, 2009, 361, 2046-2055.	13.9	655
133	Intrathoracic nontuberculous mycobacterial infections in otherwise healthy children. Pediatric Pulmonology, 2009, 44, 1051-1056.	1.0	26
134	Pulmonary nontuberculous mycobacterial infections in hyper-IgE syndrome. Journal of Allergy and Clinical Immunology, 2009, 124, 617-618.	1.5	31
135	Clinical Manifestations, Etiology, and Pathogenesis of the Hyper-IgE Syndromes. Pediatric Research, 2009, 65, 32R-37R.	1.1	145
136	Antimicrobial prophylaxis for primary immunodeficiencies. Current Opinion in Allergy and Clinical Immunology, 2009, 9, 525-530.	1.1	39
137	Impaired TH17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature, 2008, 452, 773-776.	13.7	1,046
138	The Hyper-IgE Syndromes. Immunology and Allergy Clinics of North America, 2008, 28, 277-291.	0.7	193
139	Hyper IgE syndrome: an update on clinical aspects and the role of signal transducer and activator of transcription 3. Current Opinion in Allergy and Clinical Immunology, 2008, 8, 527-533.	1.1	62
140	Brain Abnormalities in Patients With Hyperimmunoglobulin E Syndrome. Pediatrics, 2007, 119, e1121-e1125.	1.0	73
141	Causes of death in hyper-lgE syndrome. Journal of Allergy and Clinical Immunology, 2007, 119, 1234-1240.	1.5	149
142	Coronary artery aneurysms in patients with hyper IgE recurrent infection syndrome. Clinical Immunology, 2007, 122, 255-258.	1.4	63
143	<i>STAT3</i> Mutations in the Hyper-IgE Syndrome. New England Journal of Medicine, 2007, 357, 1608-1619.	13.9	1,098
144	Pneumocystis jiroveci Infection in Patients With Hyper-Immunoglobulin E Syndrome. Pediatrics, 2006, 118, e1271-e1275.	1.0	54

#	Article	IF	CITATIONS
145	Hyper IgE syndrome: review and future directions. Expert Review of Clinical Immunology, 2005, 1, 645-651.	1.3	7
146	A New Complication of Stem Cell Transplantation: Measles Inclusion Body Encephalitis. Pediatrics, 2004, 114, e657-e660.	1.0	58