
Gerwin F Koopmans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9597594/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prediction of Cadmium uptake by brown rice and derivation of soil–plant transfer models to improve soil protection guidelines. Environmental Pollution, 2009, 157, 2435-2444.	7.5	162
2	How fertile are earthworm casts? A meta-analysis. Geoderma, 2019, 338, 525-535.	5.1	133
3	Characterization of soil heavy metal pools in paddy fields in Taiwan: chemical extraction and solid-solution partitioning. Journal of Soils and Sediments, 2009, 9, 216-228.	3.0	104
4	Phosphorus Movement and Speciation in a Sandy Soil Profile after Long-Term Animal Manure Applications. Journal of Environmental Quality, 2007, 36, 305-315.	2.0	101
5	Phosphorus Availability for Plant Uptake in a Phosphorusâ€Enriched Noncalcareous Sandy Soil. Journal of Environmental Quality, 2004, 33, 965-975.	2.0	98
6	Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils. Environmental Pollution, 2008, 156, 905-914.	7.5	91
7	Influence of pH on the redox chemistry of metal (hydr)oxides and organic matter in paddy soils. Journal of Soils and Sediments, 2014, 14, 1713-1726.	3.0	87
8	Effects of silver nanoparticles (NMâ€300K) on <i>Lumbricus rubellus</i> earthworms and particle characterization in relevant test matrices including soil. Environmental Toxicology and Chemistry, 2014, 33, 743-752.	4.3	85
9	Solubility of trace metals in two contaminated paddy soils exposed to alternating flooding and drainage. Geoderma, 2016, 261, 59-69.	5.1	81
10	Characterization of Colloidal Fe from Soils Using Field-Flow Fractionation and Fe K-Edge X-ray Absorption Spectroscopy. Environmental Science & Technology, 2014, 48, 4307-4316.	10.0	75
11	Uncertainty Analysis of the Nonideal Competitive Adsorptionâ~'Donnan Model: Effects of Dissolved Organic Matter Variability on Predicted Metal Speciation in Soil Solution. Environmental Science & Technology, 2010, 44, 1340-1346.	10.0	73
12	Emerging Technologies for Removing Nonpoint Phosphorus from Surface Water and Groundwater: Introduction. Journal of Environmental Quality, 2012, 41, 621-627.	2.0	69
13	A framework to measure the availability of engineered nanoparticles in soils: Trends in soil tests and analytical tools. TrAC - Trends in Analytical Chemistry, 2016, 75, 129-140.	11.4	68
14	Wet Chemical and Phosphorusâ€31 Nuclear Magnetic Resonance Analysis of Phosphorus Speciation in a Sandy Soil Receiving Longâ€Term Fertilizer or Animal Manure Applications. Journal of Environmental Quality, 2003, 32, 287-295.	2.0	63
15	Predictions of Spatially Averaged Cadmium Contents in Rice Grains in the Fuyang Valley, P.R. China. Journal of Environmental Quality, 2009, 38, 1126-1136.	2.0	62
16	Phosphorus Desorption Dynamics in Soil and the Link to a Dynamic Concept of Bioavailability. Journal of Environmental Quality, 2004, 33, 1393-1402.	2.0	59
17	Effects of soil oven-drying on concentrations and speciation of trace metals and dissolved organic matter in soil solution extracts of sandy soils. Geoderma, 2011, 161, 147-158.	5.1	58
18	Asymmetric flow field-flow fractionation as a new approach to analyse iron-(hydr)oxide nanoparticles in soil extracts. Geoderma, 2013, 202-203, 134-141.	5.1	57

#	Article	IF	CITATIONS
19	Predicting the Phytoextraction Duration to Remediate Heavy Metal Contaminated Soils. Water, Air, and Soil Pollution, 2007, 181, 355-371.	2.4	55
20	Influence of EDDS on Metal Speciation in Soil Extracts: Measurement and Mechanistic Multicomponent Modeling. Environmental Science & Technology, 2008, 42, 1123-1130.	10.0	55
21	Phytoextraction of Phosphorusâ€Enriched Grassland Soils. Journal of Environmental Quality, 2009, 38, 751-761.	2.0	54
22	Soil phosphorus quantity–intensity relationships to predict increased soil phosphorus loss to overland and subsurface flow. Chemosphere, 2002, 48, 679-687.	8.2	53
23	Impact of model uncertainty on soil quality standards for cadmium in rice paddy fields. Science of the Total Environment, 2011, 409, 3098-3105.	8.0	50
24	Mobilization of heavy metals from contaminated paddy soil by EDDS, EDTA, and elemental sulfur. Environmental Geochemistry and Health, 2007, 29, 221-235.	3.4	47
25	Use of Reactive Materials to Bind Phosphorus. Journal of Environmental Quality, 2012, 41, 636-646.	2.0	47
26	Iron-rich colloids as carriers of phosphorus in streams: A field-flow fractionation study. Water Research, 2016, 99, 83-90.	11.3	46
27	Characterization of Colloidal Phosphorus Species in Drainage Waters from a Clay Soil Using Asymmetric Flow Field-Flow Fractionation. Journal of Environmental Quality, 2013, 42, 464-473.	2.0	45
28	COMPARING DIFFERENT EXTRACTION METHODS FOR ESTIMATING PHOSPHORUS SOLUBILITY IN VARIOUS SOIL TYPES. Soil Science, 2006, 171, 103-116.	0.9	42
29	Assessing the bioavailability of dissolved organic phosphorus in pasture and cultivated soils treated with different rates of nitrogen fertiliser. Soil Biology and Biochemistry, 2006, 38, 61-70.	8.8	40
30	Use of iron oxide nanoparticles for immobilizing phosphorus in-situ: Increase in soil reactive surface area and effect on soluble phosphorus. Science of the Total Environment, 2020, 711, 135220.	8.0	35
31	Temporal variability in trace metal solubility in a paddy soil not reflected in uptake by rice (Oryza) Tj ETQq1 1 0.78	34314 rgB ⁻ 3.4	r /Qverlock
32	Reducing Phosphorus Loading of Surface Water Using Iron-Coated Sand. Journal of Environmental Quality, 2013, 42, 250-259.	2.0	32
33	Do earthworms affect phosphorus availability to grass? A pot experiment. Soil Biology and Biochemistry, 2014, 79, 34-42.	8.8	32
34	Dynamics of Dimethyl Sulfide in a Marine Microbial Mat. Microbial Ecology, 1998, 36, 93-100.	2.8	31
35	A Feasibility Test to Estimate the Duration of Phytoextraction of Heavy Metals from Polluted Soils. International Journal of Phytoremediation, 2007, 9, 115-132.	3.1	31
36	Water and Nutrient Transport on a Heavy Clay Soil in a Fluvial Plain in The Netherlands. Journal of Environmental Quality, 2012, 41, 229-241.	2.0	30

GERWIN F KOOPMANS

#	Article	IF	CITATIONS
37	Large variations in readily-available phosphorus in casts of eight earthworm species are linked to cast properties. Soil Biology and Biochemistry, 2019, 138, 107583.	8.8	30
38	Exploring the pathways of earthworm-induced phosphorus availability. Geoderma, 2017, 303, 99-109.	5.1	28
39	Towards optimal use of phosphorus fertiliser. Scientific Reports, 2020, 10, 17804.	3.3	27
40	Assessing the Reactive Surface Area of Soils and the Association of Soil Organic Carbon with Natural Oxide Nanoparticles Using Ferrihydrite as Proxy. Environmental Science & Technology, 2020, 54, 11990-12000.	10.0	27
41	Asymmetric flow field-flow fractionation of manufactured silver nanoparticles spiked into soil solution. Journal of Chromatography A, 2015, 1392, 100-109.	3.7	26
42	In-situ measurement of free trace metal concentrations in a flooded paddy soil using the Donnan Membrane Technique. Geoderma, 2015, 241-242, 59-67.	5.1	25
43	Disturbance of Water-Extractable Phosphorus Determination by Colloidal Particles in a Heavy Clay Soil from the Netherlands. Journal of Environmental Quality, 2005, 34, 1446-1450.	2.0	22
44	SELECTIVE EXTRACTION OF LABILE PHOSPHORUS USING DIALYSIS MEMBRANE TUBES FILLED WITH HYDROUS IRON HYDROXIDE. Soil Science, 2001, 166, 475-483.	0.9	21
45	Speciation of Water-Extractable Organic Nutrients in Grassland Soils. Soil Science, 2010, 175, 15-26.	0.9	21
46	What root traits determine grass resistance to phosphorus deficiency in production grassland?. Journal of Plant Nutrition and Soil Science, 2018, 181, 323-335.	1.9	16
47	Organic micropollutants on river sediments from Rio de Janeiro State, Southeast Brazil. Cadernos De Saude Publica, 2002, 18, 477-488.	1.0	12
48	Evaluation of heavy metal availability in soils near former zinc smelters by chemical extractions and geochemical modelling. Geoderma, 2022, 423, 115970.	5.1	8
49	Use of iron-coated sand for removing soluble phosphorus from drainage water. Science of the Total Environment, 2022, 815, 152738.	8.0	7
50	Effects of Biostimulants and Fertilization on Nutrient Uptake by Grass and Composition of Soil Pore Water Versus 0.01 M CaCl ₂ Soil Extracts. Communications in Soil Science and Plant Analysis, 2021, 52, 2516-2532.	1.4	4