## **Timothy Pearson**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9597581/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Non anonical autophagy functions of ATG16L1 in epithelial cells limit lethal infection by influenza A<br>virus. EMBO Journal, 2021, 40, e105543.                                                                                                                             | 3.5 | 36        |
| 2  | Enhanced small neutral but not branched chain amino acid transport after epigenetic sodium coupled<br>neutral amino acid transporterâ€2 (SNAT2) cDNA expression in myoblasts. Journal of Cachexia,<br>Sarcopenia and Muscle, 2021, 12, 811-822.                              | 2.9 | 3         |
| 3  | The ATG5-binding and coiled coil domains of ATG16L1 maintain autophagy and tissue homeostasis in mice independently of the WD domain required for LC3-associated phagocytosis. Autophagy, 2019, 15, 599-612.                                                                 | 4.3 | 73        |
| 4  | The Role of Eif6 in Skeletal Muscle Homeostasis Revealed by Endurance Training Co-expression Networks. Cell Reports, 2017, 21, 1507-1520.                                                                                                                                    | 2.9 | 22        |
| 5  | The effect of lengthening contractions on neuromuscular junction structure in adult and old mice.<br>Age, 2016, 38, 259-272.                                                                                                                                                 | 3.0 | 21        |
| 6  | Longâ€ŧerm administration of the mitochondriaâ€ŧargeted antioxidant mitoquinone mesylate fails to<br>attenuate ageâ€ŧelated oxidative damage or rescue the loss of muscle mass and function associated<br>with aging of skeletal muscle. FASEB Journal, 2016, 30, 3771-3785. | 0.2 | 40        |
| 7  | Mitochondrial ROS regulate oxidative damage and mitophagy but not age-related muscle fiber atrophy.<br>Scientific Reports, 2016, 6, 33944.                                                                                                                                   | 1.6 | 97        |
| 8  | Manipulation of environmental oxygen modifies reactive oxygen and nitrogen species generation during myogenesis. Redox Biology, 2016, 8, 243-251.                                                                                                                            | 3.9 | 13        |
| 9  | Membrane glucocorticoid receptors are localised in the extracellular matrix and signal through the MAPK pathway in mammalian skeletal muscle fibres. Journal of Physiology, 2015, 593, 2679-2692.                                                                            | 1.3 | 23        |
| 10 | Nitric oxide availability is increased in contracting skeletal muscle from aged mice, but does not<br>differentially decrease muscle superoxide. Free Radical Biology and Medicine, 2015, 78, 82-88.                                                                         | 1.3 | 26        |
| 11 | Skeletal Muscle Contractions Induce Acute Changes in Cytosolic Superoxide, but Slower Responses in<br>Mitochondrial Superoxide and Cellular Hydrogen Peroxide. PLoS ONE, 2014, 9, e96378.                                                                                    | 1.1 | 88        |
| 12 | Mitochondrial ROS generation and function in skeletal muscle from older subjects (863.5). FASEB<br>Journal, 2014, 28, 863.5.                                                                                                                                                 | 0.2 | 0         |
| 13 | In vitro susceptibility of thioredoxins and glutathione to redox modification and aging-related changes in skeletal muscle. Free Radical Biology and Medicine, 2012, 53, 2017-2027.                                                                                          | 1.3 | 24        |
| 14 | A simple protocol for the subcellular fractionation of skeletal muscle cells and tissue. BMC Research<br>Notes, 2012, 5, 513.                                                                                                                                                | 0.6 | 257       |
| 15 | In vivo studies of motor nerve reâ€growth following skeletal muscle damage by lengthening contractions. FASEB Journal, 2012, 26, 1141.4.                                                                                                                                     | 0.2 | 0         |
| 16 | The ageâ€related failure of adaptive responses to contractile activity in skeletal muscle is mimicked in young mice by deletion of Cu,Zn superoxide dismutase. Aging Cell, 2010, 9, 979-990.                                                                                 | 3.0 | 48        |
| 17 | In Vitro Study of Thrombin on Tubule Formation and Regulators of Angiogenesis. Clinical and Applied Thrombosis/Hemostasis, 2010, 16, 674-678.                                                                                                                                | 0.7 | 10        |
| 18 | Measurement of vasoactive metabolites (hydroxyeicosatetraenoic and epoxyeicosatrienoic acids) in uterine tissues of normal and compromised human pregnancy. Journal of Hypertension, 2010, 28, 2429-2437.                                                                    | 0.3 | 21        |

TIMOTHY PEARSON

| #  | Article                                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Detection of EETs and HETE-generating cytochrome <i>P-</i> 450 enzymes and the effects of their metabolites on myometrial and vascular function. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E647-E656.                                       | 1.8 | 22        |
| 20 | Quantitative profiling of epoxyeicosatrienoic, hydroxyeicosatetraenoic, and<br>dihydroxyeicosatetraenoic acids in human intrauterine tissues using liquid<br>chromatography/electrospray ionization tandem mass spectrometry. Analytical Biochemistry, 2007,<br>365, 40-51. | 1.1 | 54        |
| 21 | Sustained elevation of extracellular adenosine and activation of A1 receptors underlie the post-ischaemic inhibition of neuronal function in rat hippocampus in vitro. Journal of Neurochemistry, 2006, 97, 1357-1368.                                                      | 2.1 | 79        |
| 22 | Adenosine and ATP Link PCO2 to Cortical Excitability via pH. Neuron, 2005, 48, 1011-1023.                                                                                                                                                                                   | 3.8 | 182       |
| 23 | Adrenoceptor subtype-specific acceleration of the hypoxic depression of excitatory synaptic<br>transmission in area CA1 of the rat hippocampus. European Journal of Neuroscience, 2004, 20, 1555-1565.                                                                      | 1.2 | 22        |
| 24 | AICA riboside both activates AMP-activated protein kinase and competes with adenosine for the nucleoside transporter in the CA1 region of the rat hippocampus. Journal of Neurochemistry, 2004, 88, 1272-1282.                                                              | 2.1 | 131       |
| 25 | A Depletable Pool of Adenosine in Area CA1 of the Rat Hippocampus. Journal of Neuroscience, 2001, 21, 2298-2307.                                                                                                                                                            | 1.7 | 70        |
| 26 | Volume-regulated anion channels do not contribute extracellular adenosine during the hypoxic<br>depression of excitatory synaptic transmission in area CA1 of rat hippocampus. European Journal of<br>Neuroscience, 2000, 12, 3064-3066.                                    | 1.2 | 9         |
| 27 | Direct measurement of adenosine release during hypoxia in the CA1 region of the rat hippocampal slice. Journal of Physiology, 2000, 526, 143-155.                                                                                                                           | 1.3 | 160       |
| 28 | Heterologous acclimation: a novel approach to the study of thermal acclimation in the crab Cancer pagurus. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 277, R24-R30.                                                          | 0.9 | 8         |
| 29 | Multiple pathways underlying endotheliumâ€dependent relaxation in the rabbit isolated femoral artery.<br>British Journal of Pharmacology, 1995, 115, 31-38.                                                                                                                 | 2.7 | 54        |