Michael D Milsom

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9597495/publications.pdf

Version: 2024-02-01

56 3,434 24 49 papers citations h-index g-index

60 60 60 6541 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	An episomal DNA vector platform for the persistent genetic modification of pluripotent stem cells and their differentiated progeny. Stem Cell Reports, 2022, 17, 143-158.	4.8	10
2	DNMT1 Deficiency Impacts on Plasmacytoid Dendritic Cells in Homeostasis and Autoimmune Disease. Journal of Immunology, 2022, 208, 358-370.	0.8	5
3	Somatic mutation rates scale with lifespan across mammals. Nature, 2022, 604, 517-524.	27.8	211
4	Antigen presentation safeguards the integrity of the hematopoietic stem cell pool. Cell Stem Cell, 2022, 29, 760-775.e10.	11.1	29
5	Fast and high-fidelity in situ 3D imaging protocol for stem cells and niche components for mouse organs and tissues. STAR Protocols, 2022, 3, 101483.	1.2	3
6	A 3D iPSC-differentiation model identifies interleukin-3 as a regulator of early human hematopoietic specification. Haematologica, 2021, 106, 1354-1367.	3.5	16
7	Hotspot DNMT3A mutations in clonal hematopoiesis and acute myeloid leukemia sensitize cells to azacytidine via viral mimicry response. Nature Cancer, 2021, 2, 527-544.	13.2	37
8	Hypersensitivity response has negligible impact on Hematopoietic Stem Cells. Stem Cell Reports, 2021, 16, 1884-1893.	4.8	2
9	Distinct effects of ruxolitinib and interferon-alpha on murine JAK2V617F myeloproliferative neoplasm hematopoietic stem cell populations. Leukemia, 2020, 34, 1075-1089.	7.2	29
10	The role of the stem cell epigenome in normal aging and rejuvenative therapy. Human Molecular Genetics, 2020, 29, R236-R247.	2.9	4
11	Haematopoietic stem cells in perisinusoidal niches are protected from ageing. Nature Cell Biology, 2019, 21, 1309-1320.	10.3	88
12	Platelet GPlbî \pm is a mediator and potential interventional target for NASH and subsequent liver cancer. Nature Medicine, 2019, 25, 641-655.	30.7	259
13	Ex Vivo Expansion of Functional Hematopoietic Stem Cells, Facilitating Transplantation in the Absence of Conditioning. HemaSphere, 2019, 3, e306.	2.7	4
14	Neutrophil Progenitors Function as a Mechanistic Link Between Sleep Disruption and Heart Disease. HemaSphere, 2019, 3, e257.	2.7	0
15	Potential Pre‣eukemic Mutations in <i>PPM1D</i> Confer Chemotherapy Resistance to Aged HSC Clones. HemaSphere, 2019, 3, e171.	2.7	0
16	Identification of Embryonic Neural Plate Border Stem Cells and Their Generation by Direct Reprogramming from Adult Human Blood Cells. Cell Stem Cell, 2019, 24, 166-182.e13.	11.1	39
17	Causes and Consequences of Hematopoietic Stem Cell Heterogeneity. Cell Stem Cell, 2018, 22, 627-638.	11.1	233
18	Impact of DNA methylation programming on normal and pre-leukemic hematopoiesis. Seminars in Cancer Biology, 2018, 51, 89-100.	9.6	21

#	Article	IF	CITATIONS
19	Enhancement of mouse hematopoietic stem/progenitor cell function via transient gene delivery using integration-deficient lentiviral vectors. Experimental Hematology, 2018, 57, 21-29.	0.4	6
20	Protein Kinase C Epsilon Is a Key Regulator of Mitochondrial Redox Homeostasis in Acute Myeloid Leukemia. Clinical Cancer Research, 2018, 24, 608-618.	7.0	20
21	Stem Cells Spirited Away by Alcoholâ€Induced DNA Damage. HemaSphere, 2018, 2, e36.	2.7	1
22	An Inflammatory Environment: Donor Granulocytes Mediate Endothelial Regeneration Following Transplantation. HemaSphere, 2018, 2, e25.	2.7	0
23	The Deconvolution of Human Hematopoiesis. HemaSphere, 2018, 2, e153.	2.7	0
24	The Roots of Neurodegenerative Disease Found in Developmental Hematopoiesis. HemaSphere, 2017, 1 , e10.	2.7	0
25	EDA-Fibronectin Originating from Osteoblasts Inhibits the Immune Response against Cancer. PLoS Biology, 2016, 14, e1002562.	5.6	31
26	Barriers to Effective Genome Editing of Haematopoietic Stem Cells. Current Stem Cell Reports, 2016, 2, 2-8.	1.6	0
27	Lineage-specific BCL11A knockdown circumvents toxicities and reverses sickle phenotype. Journal of Clinical Investigation, 2016, 126, 3868-3878.	8.2	129
28	Stem Cell-Specific Mechanisms Ensure Genomic Fidelity within HSCs and upon Aging of HSCs. Cell Reports, 2015, 13, 2412-2424.	6.4	48
29	Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells. Nature, 2015, 520, 549-552.	27.8	498
30	miRNA-embedded shRNAs for Lineage-specific BCL11A Knockdown and Hemoglobin F Induction. Molecular Therapy, 2015, 23, 1465-1474.	8.2	101
31	The Fanconi anemia pathway is required for efficient repair of stress-induced DNA damage in haematopoietic stem cells. Cell Cycle, 2015, 14, 2734-2742.	2.6	18
32	Clonal evolution of preleukemic hematopoietic stem cells in acute myeloid leukemia. Experimental Hematology, 2015, 43, 989-992.	0.4	25
33	Inflammation-Induced Emergency Megakaryopoiesis Driven by Hematopoietic Stem Cell-like Megakaryocyte Progenitors. Cell Stem Cell, 2015, 17, 422-434.	11.1	353
34	Identification of DNA methylation changes at <i>cis</i> -regulatory elements during early steps of HSC differentiation using tagmentation-based whole genome bisulfite sequencing. Cell Cycle, 2014, 13, 3476-3487.	2.6	39
35	Identification of Regulatory Networks in HSCs and Their Immediate Progeny via Integrated Proteome, Transcriptome, and DNA Methylome Analysis. Cell Stem Cell, 2014, 15, 507-522.	11.1	439
36	Early aberrant DNA methylation events in a mouse model of acute myeloid leukemia. Genome Medicine, 2014, 6, 34.	8.2	34

#	Article	IF	Citations
37	Requirement for CDK6 in MLL-rearranged acute myeloid leukemia. Blood, 2014, 124, 13-23.	1.4	139
38	The Rac GTPase effector p21-activated kinase is essential for hematopoietic stem/progenitor cell migration and engraftment. Blood, 2013, 121, 2474-2482.	1.4	31
39	Disrupted Signaling through the Fanconi Anemia Pathway Leads to Dysfunctional Hematopoietic Stem Cell Biology: Underlying Mechanisms and Potential Therapeutic Strategies. Anemia, 2012, 2012, 1-18.	1.7	15
40	Rac signaling in osteoblastic cells is required for normal bone development but is dispensable for hematopoietic development. Blood, 2012, 119, 736-744.	1.4	22
41	Overcoming reprogramming resistance of Fanconi anemia cells. Blood, 2012, 119, 5449-5457.	1.4	133
42	Hematopoietic SIN Lentiviral Micro RNA-Mediated Silencing of BCL11A: Pre-Clinical Evidence for a Sickle Cell Disease Gene-Therapy Trial. Blood, 2012, 120, 753-753.	1.4	1
43	Bridging the information gap. Nature Immunology, 2011, 12, 377-379.	14.5	5
44	Insertional Mutagenesis in Hematopoietic Cells: Lessons Learned from Adverse Events in Clinical Gene Therapy Trials., 2011,, 131-165.		1
45	Gaining the hard yard: preâ€clinical evaluation of lentiviralâ€mediated gene therapy for the treatment of βâ€thalassemia. EMBO Molecular Medicine, 2010, 2, 291-293.	6.9	2
46	Intact Rac Signaling Is Important for Leukemia Cell Survival. Blood, 2010, 116, 2885-2885.	1.4	0
47	Ectopic HOXB4 overcomes the inhibitory effect of tumor necrosis factor-α on Fanconi anemia hematopoietic stem and progenitor cells. Blood, 2009, 113, 5111-5120.	1.4	25
48	Fanca-/- hematopoietic stem cells demonstrate a mobilization defect which can be overcome by administration of the Rac inhibitor NSC23766. Haematologica, 2009, 94, 1011-1015.	3.5	14
49	Reciprocal Relationship between O6-Methylguanine-DNA Methyltransferase P140K Expression Level and Chemoprotection of Hematopoietic Stem Cells. Cancer Research, 2008, 68, 6171-6180.	0.9	24
50	Rapid Lentiviral Transduction Preserves the Engraftment Potential of Fancaâ^'/â^' Hematopoietic Stem Cells. Molecular Therapy, 2008, 16, 1154-1160.	8.2	38
51	Rac1 is essential for intraembryonic hematopoiesis and for the initial seeding of fetal liver with definitive hematopoietic progenitor cells. Blood, 2008, 111, 3313-3321.	1.4	59
52	Live and let die: In vivo selection of gene-modified hematopoietic stem cells via MGMT-mediated chemoprotection. DNA Repair, 2007, 6, 1210-1221.	2.8	25
53	Multicistronic lentiviral vectors containing the FMDV 2A cleavage factor demonstrate robust expression of encoded genes at limiting MOI. Virology Journal, 2006, 3, 14.	3.4	71
54	The P140K mutant of humanO6-methylguanine-DNA-methyltransferase (MGMT) confers resistancein vitro andin vivo to temozolomide in combination with the novel MGMT inactivatorO6-(4-bromothenyl)guanine. Journal of Gene Medicine, 2006, 8, 29-34.	2.8	32

#	Article	IF	CITATION
55	Protection and selection for gene therapy in the hematopoietic system. Journal of Gene Medicine, 2004, 6, 133-146.	2.8	23
56	Enhanced in vivo selection of bone marrow cells by retroviral-mediated coexpression of mutant O6-methylguanine-DNA-methyltransferase and HOXB4. Molecular Therapy, 2004, 10, 862-873.	8.2	32