
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9597274/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Large unsaturated positive and negative magnetoresistance in Weyl semimetal TaP. Science China: Physics, Mechanics and Astronomy, 2016, 59, 1.	5.1	90
2	A fast self-healing and conductive nanocomposite hydrogel as soft strain sensor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 567, 139-149.	4.7	88
3	CdS nanocapsules and nanospheres as efficient solar light-driven photocatalysts for degradation of Congo red dye. Inorganic Chemistry Communication, 2016, 72, 33-41.	3.9	47
4	Insight into metallic oxide semiconductor (SnO2, ZnO, CuO, α-Fe2O3, WO3)-carbon nitride (g-C3N4) heterojunction for gas sensing application. Sensors and Actuators A: Physical, 2021, 332, 113128.	4.1	45
5	Multiband Superconductivity of Heavy Electrons in aTlNi2Se2Single Crystal. Physical Review Letters, 2013, 111, 207001.	7.8	40
6	Structural, electronic, elastic, and magnetic properties of <scp> NaQF ₃ </scp> (QÂ=Âag, Pb,) Tj ETQ 2022, 46, 2446-2453.	9q0 0 0 rgE 4.5	3T /Overlocl 39
7	Oxide-based resistive switching-based devices: fabrication, influence parameters and applications. Journal of Materials Chemistry C, 2021, 9, 15755-15788.	5.5	38
8	Influence of oxygen vacancies on the structural, dielectric, and magnetic properties of (Mn, Co) co-doped ZnO nanostructures. Journal of Materials Science: Materials in Electronics, 2018, 29, 9785-9795.	2.2	36
9	First-principal investigations of electronic, structural, elastic and optical properties of the fluoroperovskite TlLF ₃ (L = Ca, Cd) compounds for optoelectronic applications. RSC Advances, 2022, 12, 7002-7008.	3.6	33
10	Structural, dielectric and magnetic properties of (Al, Ni) co-doped ZnO nanoparticles. Journal of Materials Science: Materials in Electronics, 2017, 28, 4333-4339.	2.2	32
11	Structural, optical, dielectric and magnetic properties of PVP coated magnetite (Fe3O4) nanoparticles. Journal of Materials Science: Materials in Electronics, 2018, 29, 20040-20050.	2.2	31
12	The effect of Mn and Co dual-doping on the structural, optical, dielectric and magnetic properties of ZnO nanostructures. RSC Advances, 2022, 12, 11923-11932.	3.6	31
13	Diluted magnetic semiconductor properties in TM doped ZnO nanoparticles. RSC Advances, 2022, 12, 13456-13463.	3.6	31
14	Magnetic and dielectric properties of (Co, Zn) co-doped SnO2 diluted magnetic semiconducting nanoparticles. Journal of Materials Science: Materials in Electronics, 2016, 27, 5960-5966.	2.2	30
15	Variation of structural, optical, dielectric and magnetic properties of SnO2 nanoparticles. Journal of Materials Science: Materials in Electronics, 2017, 28, 4625-4636.	2.2	30
16	Modeling structural, elastic, electronic and optical properties of ternary cubic barium based fluoroperovskites MBaF3 (M = Ga and In) compounds based on DFT. Materials Science in Semiconductor Processing, 2022, 139, 106345.	4.0	30
17	Oxygen vacancies induced room temperature ferromagnetism and enhancedÂdielectric propertiesÂin Co and Mn co-doped ZnOÂnanoparticles. Journal of Materials Science: Materials in Electronics, 2021, 32, 9463-9474.	2.2	28
18	Effect of annealing on structural, dielectric, transport and magnetic properties of (Zn, Co) co-doped SnO2 nanoparticles. Journal of Materials Science: Materials in Electronics, 2016, 27, 4003-4010.	2.2	26

#	Article	IF	CITATIONS
19	Study of structural, optical and dielectric properties of α-MnO2 nanotubes (NTS). Journal of Materials Science: Materials in Electronics, 2019, 30, 19199-19205.	2.2	24
20	Investigation of structural, optical, dielectric and magnetic properties of Sno2 nanorods and nanospheres. Materials Chemistry and Physics, 2020, 241, 122382.	4.0	24
21	Impact of the KKL Correlation Model on the Activation of Thermal Energy for the Hybrid Nanofluid (GO+ZnO+Water) Flow through Permeable Vertically Rotating Surface. Energies, 2022, 15, 2872.	3.1	23
22	Effect of air annealing on the structure, dielectric and magnetic properties of (Co, Ni) co-doped SnO2 nanoparticles. Journal of Materials Science: Materials in Electronics, 2016, 27, 10532-10540.	2.2	20
23	Exploring the exemplary structural, electronic, optical, and elastic nature of inorganic ternary cubic XBaF ₃ (X = Al and Tl) employing the accurate TB-mBJ approach. Semiconductor Science and Technology, 2022, 37, 075004.	2.0	20
24	Effects of Ni co-doping concentrations on dielectric and magnetic properties of (Co, Ni) co-doped SnO2 nanoparticles. Journal of Materials Science: Materials in Electronics, 2016, 27, 7725-7730.	2.2	19
25	Effect of annealing on Ni-doped ZnO nanoparticles synthesized by the co-precipitation method. Journal of Materials Science: Materials in Electronics, 2017, 28, 10122-10130.	2.2	19
26	Structure and magnetic properties of (Co, Mn) co-doped ZnO diluted magnetic semiconductor nanoparticles. Journal of Materials Science: Materials in Electronics, 2018, 29, 32-37.	2.2	19
27	Effect of thermal calcination on the structural, dielectric and magnetic properties of (ZnO–Ni) semiconductor. Journal of Materials Science: Materials in Electronics, 2019, 30, 3396-3404.	2.2	19
28	Solar-light driven photocatalytic conversion of p -nitrophenol to p -aminophenol on CdS nanosheets and nanorods. Inorganic Chemistry Communication, 2017, 79, 99-103.	3.9	18
29	Dielectric abnormality and high-permittivity microwave dielectric properties of SrO-TiO2-CeO2 solid solution. Ceramics International, 2019, 45, 3634-3642.	4.8	18
30	Recent work on electrochemical deposition of Zn-Ni (-X) alloys for corrosion protection of steel. Anti-Corrosion Methods and Materials, 2019, 66, 45-60.	1.5	17
31	In silico genomic and proteomic analyses of three heat shock proteins (HSP70, HSP90-α, and HSP90-β) in even-toed ungulates. Electronic Journal of Biotechnology, 2021, 53, 61-70.	2.2	16
32	Effect of Sn-doping on the structural, optical, dielectric and magnetic properties of ZnO nanoparticles for spintronics applications. Journal of Materials Science: Materials in Electronics, 2021, 32, 21631-21642.	2.2	15
33	Enhancing the physical properties and photocatalytic activity of TiO ₂ nanoparticles <i>via</i> cobalt doping. RSC Advances, 2022, 12, 15767-15774.	3.6	15
34	Variation of structural, dielectric and magnetic properties of PVP coated Î ³ -Fe2O3 nanoparticles. Journal of Materials Science: Materials in Electronics, 2016, 27, 12490-12498.	2.2	14
35	Insight into the Exemplary Physical Properties of Zn-Based Fluoroperovskite Compounds XZnF3 (X = Al,) Tj ETQ	q1 1.0.784 2.9	1314 rgBT /Ov
36	Impact of viscous dissipation and coriolis effects in heat and mass transfer analysis of the 3D non-Newtonian fluid flow. Case Studies in Thermal Engineering, 2022, 37, 102289.	5.7	14

#	Article	IF	CITATIONS
37	Structure and magnetic properties of (Co, Ce) co-doped ZnO-based diluted magnetic semiconductor nanoparticles. Journal of Materials Science: Materials in Electronics, 2021, 32, 24394-24400.	2.2	13
38	The structural and dilute magnetic properties of (Co, Li) co-doped-ZnO semiconductor nanoparticles. MRS Communications, 2022, 12, 154-159.	1.8	12
39	Efficient Solar Light Driven Photocatalytic Degradation of Congo Red Dye on CdS Nanostructures Derived from Single Source Precursor. Journal of Nanoscience and Nanotechnology, 2018, 18, 7405-7413.	0.9	11
40	Investigation of structural, optical, electrochemical and dielectric properties of SnO2/GO nanocomposite. Journal of Materials Science: Materials in Electronics, 2019, 30, 10202-10210.	2.2	11
41	Oxygen vacancies induced variations in structural, optical and dielectric properties of SnO2/graphite nanocomposite. Journal of Materials Science: Materials in Electronics, 2021, 32, 1402-1412.	2.2	11
42	Effect of annealing temperature on the dielectric and magnetic response of (Co, Zn) co-doped SnO2 nanoparticles. Journal of Materials Science: Materials in Electronics, 2017, 28, 2673-2679.	2.2	10
43	Resistive- and capacitive-type humidity and temperature sensors based on a novel caged nickel sulfide for environmental monitoring. Journal of Materials Science: Materials in Electronics, 2020, 31, 3557-3563.	2.2	10
44	Fast and high photoresponsivity gallium telluride/hafnium selenide van der Waals heterostructure photodiode. Journal of Materials Chemistry C, 2021, 9, 7110-7118.	5.5	10
45	High-Performance coupled plasmon waveguide resonance optical sensor based on SiO2:Ag film. Results in Physics, 2021, 26, 104308.	4.1	10
46	Computational investigation of structural, magnetic, elastic, and electronic properties of Half-Heusler ScVX (X = Si, Ge, Sn, and Pb) compounds. European Physical Journal Plus, 2021, 136, 1.	2.6	10
47	Observation of quantum criticality in antiferromagnetic based (Ce1Y)2Ir3Ge5 Kondo-Lattice system. Journal of Magnetism and Magnetic Materials, 2022, 556, 169361.	2.3	10
48	Ferromagnetic quantum critical behavior in heavy-fermion compounds CeTi1â^'xNixGe3. Materials Research Express, 2016, 3, 106101.	1.6	9
49	High performance and gate-controlled GeSe/HfS ₂ negative differential resistance device. RSC Advances, 2022, 12, 1278-1286.	3.6	9
50	Phase diagram and annealing effect for Fe _{1+Î} Te _{1â^'<i>x</i>} S _{<i>x</i>} single crystals. Journal of Physics Condensed Matter, 2013, 25, 385701.	1.8	8
51	Electrodeposition of high corrosion resistant Ni–Sn–P alloy coatings from an ionic liquid based on choline chloride. Transactions of the Institute of Metal Finishing, 2018, 96, 20-26.	1.3	8
52	Dielectric and magnetic properties of cobalt doped γ-Fe2O3 nanoparticles. Journal of Materials Science: Materials in Electronics, 2019, 30, 13698-13707.	2.2	8
53	Dielectric and ferromagnetic properties of (Ni, Co) co-doped SnO2 nanoparticles. Journal of Materials Science: Materials in Electronics, 2021, 32, 19859-19870.	2.2	8
54	Electrodeposition of ternary Zn–Ni–Sn alloys from an ionic liquid based on choline chloride and their characterisation. Transactions of the Institute of Metal Finishing, 2016, 94, 237-245.	1.3	7

#	Article	IF	CITATIONS
55	Environmental effect on structural, magnetic, and dielectric properties of BFO nanostructure and its solar cell applications. Journal of Materials Science: Materials in Electronics, 2021, 32, 3313-3323.	2.2	7
56	Optical band gap and dielectric abnormality in (Sr, Ce, Zr)TiO3 composite ceramics sintered in nitrogen. Journal of Materials Science: Materials in Electronics, 2019, 30, 4572-4579.	2.2	6
57	Morphological structural and energy storage based study of MoS ₂ /ZnO nanocomposite. Materials Research Express, 2019, 6, 125087.	1.6	6
58	Effect of Sr and Co co-doping on the TiO2-diluted magnetic semiconductor for spintronic applications. Journal of Materials Science: Materials in Electronics, 2021, 32, 28718-28729.	2.2	6
59	Insight into the exemplary structural, elastic, electronic and optical nature of GaBeCl ₃ and InBeCl ₃ : a DFT study. RSC Advances, 2022, 12, 8172-8177.	3.6	6
60	Large low field magnetocaloric effect in first-order phase transition compound TlFe3Te3 with low-level hysteresis. Scientific Reports, 2016, 6, 34235.	3.3	4
61	Ternary Zn–Mn–Sn alloy electrodeposition from an ionic liquid based on choline chloride. Transactions of the Institute of Metal Finishing, 2017, 95, 217-225.	1.3	4
62	Variations in structural, optical, and dielectric properties of CuO nanostructures with thermal decomposition. Journal of Materials Science: Materials in Electronics, 2020, 31, 10649-10656.	2.2	4
63	Comparison between axial and radial melt stirring on purification of industrial aluminum during Ohno Continuous Casting. Engineering Science and Technology, an International Journal, 2016, 19, 2100-2108.	3.2	3
64	Quantum critical behavior in an antiferromagnetic heavy-fermion Kondo lattice system (Ce\${}_{1-x}\$La _{<i>x</i>}) ₂ Ir ₃ Ge ₅ . Chinese Physics B, 2017, 26, 017401.	1.4	3
65	Influence of Li-Co co-doping on structural and optical properties as well as on antibacterial activity of ZnO. Materials Research Express, 2019, 6, 115037.	1.6	3
66	Magnetic and critical properties of Cr 1/3 NbS 1.86 with T C = 56 K. Physica Status Solidi - Rapid Research Letters, 0, , 2100410.	2.4	3
67	Electrical and hysteric properties of organic compound-based humidity sensor and its dualistic interactive approach to H2O molecules. Materials Today Communications, 2021, 29, 102882.	1.9	3
68	Superconductivity and disorder effect in TlNi2Se2â^'xSxcompounds. Journal of Physics Condensed Matter, 2015, 27, 395701.	1.8	2
69	Optimization of Single α-Phase for Promoting Ferromagnetic Properties of 44Fe–28Cr–22Co–3Mo–1Ti–2V Permanent Magnet with Varying Co Concentration for Energy Storag Materials, 2022, 15, 2344.	je .2. 9	2
70	The prevalence of Clostridium perfringens in retail meat of Mardan, Pakistan. Turkish Journal of Veterinary and Animal Sciences, 2020, 44, 618-623.	0.5	1
71	Electrical and Optical Properties of Indium and Lead Co-Doped Cd0.9Zn0.1Te. Materials, 2021, 14, 5825.	2.9	1