
Kwesi Sagoe-Crentsil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9597030/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dispersion of graphene oxide–silica nanohybrids in alkaline environment for improving ordinary Portland cement composites. Cement and Concrete Composites, 2020, 106, 103488.	4.6	71
2	Distribution of carbon nanotubes in fresh ordinary Portland cement pastes: understanding from a two-phase perspective. RSC Advances, 2016, 6, 5745-5753.	1.7	50
3	Graphene oxide-coated Poly(vinyl alcohol) fibers for enhanced fiber-reinforced cementitious composites. Composites Part B: Engineering, 2019, 174, 107010.	5.9	45
4	Pore shape analysis using centrifuge driven metal intrusion: Indication on porosimetry equations, hydration and packing. Construction and Building Materials, 2017, 154, 95-104.	3.2	40
5	Graphene oxide-coated sand for improving performance of cement composites. Cement and Concrete Composites, 2021, 124, 104279.	4.6	28
6	Antifoaming effect of graphene oxide nanosheets in polymer-modified cement composites for enhanced microstructure and mechanical performance. Cement and Concrete Research, 2022, 158, 106843.	4.6	22
7	Microstructure of graphene oxide–silica-reinforced OPC composites: Image-based characterization and nano-identification through deep learning. Cement and Concrete Research, 2022, 154, 106737.	4.6	20
8	Controlled growth and ordering of poorly-crystalline calcium-silicate-hydrate nanosheets. Communications Materials, 2021, 2, .	2.9	19
9	Effective strategies to realize high-performance graphene-reinforced cement composites. Construction and Building Materials, 2022, 324, 126636.	3.2	19
10	Effect of Graphene Oxide on the Pore Structure of Cement Paste: Implications for Performance Enhancement. ACS Applied Nano Materials, 2021, 4, 10623-10633.	2.4	15
11	A century of research on calcium silicate hydrate (C–S–H): Leaping from structural characterization to nanoengineering. Journal of the American Ceramic Society, 2022, 105, 3081-3099.	1.9	15
12	Graphene oxide-reinforced thin shells for high-performance, lightweight cement composites. Composites Part B: Engineering, 2022, 235, 109796.	5.9	12
13	Graphene Oxide-Based Mesoporous Calcium Silicate Hydrate Sandwich-like Structure: Synthesis and Application for Thermal Energy Storage. ACS Applied Energy Materials, 2022, 5, 958-969.	2.5	10
14	Digital concrete modelling: An alternative approach to microstructural pore analysis of cement hydrates. Construction and Building Materials, 2021, 303, 124558.	3.2	9
15	Mechanisms of dispersion of nanoparticle-decorated graphene oxide nanosheets in aqueous media: Experimental and molecular dynamics simulation study. Carbon, 2021, 184, 689-697.	5.4	9
16	Pathways to Commercialisation for Brown Coal Fly Ash-Based Geopolymer Concrete in Australia. Sustainability, 2021, 13, 4350.	1.6	8
17	Predicting the permeability of consolidated silty clay via digital soil reconstruction. Computers and Geotechnics, 2021, 140, 104468.	2.3	8
18	Direct 2D cement-nanoadditive deposition enabling carbon-neutral hydrogen from natural gas. Nano Energy, 2022, 99, 107415.	8.2	8

KWESI SAGOE-CRENTSIL

#	Article	IF	CITATIONS
19	The interaction of graphene oxide with cement mortar: implications on reinforcing mechanisms. Journal of Materials Science, 2022, 57, 3405-3415.	1.7	7
20	Determining the disordered nanostructure of calcium silicate hydrate (Câ€Sâ€H) from broad Xâ€ray diffractograms. Journal of the American Ceramic Society, 2022, 105, 1491-1502.	1.9	6
21	Dispersion of silane-functionalized GO and its reinforcing effects in cement composites. Journal of Building Engineering, 2021, 43, 103228.	1.6	5
22	Proposed mechanism for the enhanced microstructure of graphene oxide–Portland cement composites. Journal of Building Engineering, 2022, 54, 104604.	1.6	5
23	Limestone calcined clay cement: mechanical properties, crystallography, and microstructure development. Journal of Sustainable Cement-Based Materials, 2023, 12, 427-440.	1.7	5
24	Controlling the rheological properties of cement for a submillimetre-thin shell structure. Materials and Structures/Materiaux Et Constructions, 2021, 54, 1.	1.3	3
25	Damage-tolerant material design motif derived from asymmetrical rotation. Nature Communications, 2022, 13, 1289.	5.8	3
26	Revealing Microstructural Modifications of Graphene Oxide-Modified Cement via Deep Learning and Nanoporosity Mapping: Implications for Structural Materials' Performance. ACS Applied Nano Materials, 2022, 5, 7092-7102.	2.4	3
27	A new empirical diffusion model for solvents in sprayed seals based on evaporation measurements. International Journal of Pavement Engineering, 2022, 23, 3592-3602.	2.2	1
28	Large set microstructure reconstruction mimicking quantum computing approach via deep learning. Acta Materialia, 2022, 230, 117860.	3.8	1
29	Capillary bridges between unsaturated nano-mineral particles: a molecular dynamics study. Physical Chemistry Chemical Physics, 2022, 24, 8398-8407.	1.3	О