Uwe Jassmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9596996/publications.pdf

Version: 2024-02-01

		1684188	1588992	
17	86	5	8	
papers	citations	h-index	g-index	
17	17	17	53	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Driving Torque Control for a Nacelle Test Bench. Journal of Physics: Conference Series, 2014, 524, 012068.	0.4	12
2	Testing nacelles of wind turbines with a hardware in the loop test bench. IEEE Instrumentation and Measurement Magazine, 2014, 17, 26-33.	1.6	11
3	Model Predictive wind turbine control for load alleviation and power leveling in Extreme Operation conditions., 2016,,.		9
4	CertBench: conclusions from the comparison of certification results derived on system test benches and in the field. Forschung Im Ingenieurwesen/Engineering Research, 2021, 85, 353-371.	1.6	9
5	Design and Analysis of a MPC-based Mechanical Hardware-in-the-Loop System for Full-Scale Wind Turbine System Test Benches. IFAC-PapersOnLine, 2017, 50, 10985-10991.	0.9	8
6	An extended inertia and eigenfrequency emulation for full-scale wind turbine nacelle test benches. , $2015, \ldots$		7
7	Experimental Validation of Inertia-Eigenfrequency Emulation for Wind Turbines on System Test Benches. , 2020, , .		5
8	Impact of Multi-Physics HiL Test Benches on Wind Turbine Certification. Energies, 2022, 15, 1336.	3.1	5
9	Requirements on Super-Short-Term Wind Speed Predictions for Model Predictive Wind Turbine Control. , 2019, , .		4
10	A general framework for a control-based design of power and mechanical hardware-in-the-loop systems. IFAC-PapersOnLine, 2017, 50, 10957-10963.	0.9	3
11	Model Predictive Speed Control of a Wind Turbine System Test Bench. IFAC-PapersOnLine, 2018, 51, 349-354.	0.9	3
12	Model Predictive Torque Control of a Wind Turbine System Test Bench in Hardware-in-the-Loop Operation. , $2019, , .$		3
13	A Genetic Algorithm-based Robust Control Approach for Wind Turbine System Test Benches. , 2020, , .		3
14	Setup and Hardware-in-the-Loop Operation of an Open Control Research Wind Turbine on a System Test Bench. , 2019, , .		2
15	Control-Oriented Model of a Molten Salt Solar Power Central Receiver. , 2019, , .		1
16	An Individual Pitch Control Concept for Wind Turbines Based on Inertial Measurement Units. Computational Methods in Applied Sciences (Springer), 2020, , 180-187.	0.3	1
17	Comparison of Hardware-in-the-Loop Control Methods for Wind Turbine Drive Trains on System Test Benches. , 2021, , .		O