Masayuki Saito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9596927/publications.pdf

Version: 2024-02-01

64 papers 5,763 citations

28 h-index 64 g-index

66 all docs 66
docs citations

66 times ranked 6247 citing authors

#	Article	IF	CITATIONS
1	Selenoprotein P-mediated reductive stress impairs cold-induced thermogenesis in brown fat. Cell Reports, 2022, 38, 110566.	6.4	13
2	Kruppelâ€like factorÂ15 regulates fuel switching between glucose and fatty acids in brown adipocytes. Journal of Diabetes Investigation, 2021, 12, 1144-1151.	2.4	8
3	Brown Fat as a Regulator of Systemic Metabolism beyond Thermogenesis. Diabetes and Metabolism Journal, 2021, 45, 840-852.	4.7	14
4	Diurnal variations of brown fat thermogenesis and fat oxidation in humans. International Journal of Obesity, 2021, 45, 2499-2505.	3. 4	15
5	Visualization of intracellular lipid metabolism in brown adipocytes by time-lapse ultra-multiplex CARS microspectroscopy with an onstage incubator. Journal of Chemical Physics, 2021, 155, 125102.	3.0	5
6	Bacteroides spp. promotes branched-chain amino acid catabolism in brown fat and inhibits obesity. IScience, 2021, 24, 103342.	4.1	58
7	UCP1-dependent and UCP1-independent metabolic changes induced by acute cold exposure in brown adipose tissue of mice. Metabolism: Clinical and Experimental, 2020, 113, 154396.	3.4	43
8	Multiorgan contribution to non-shivering and shivering thermogenesis and vascular responses during gradual cold exposure in humans. European Journal of Applied Physiology, 2020, 120, 2737-2747.	2.5	5
9	Brown Adipose Tissue, Diet-Induced Thermogenesis, and Thermogenic Food Ingredients: From Mice to Men. Frontiers in Endocrinology, 2020, 11, 222.	3.5	131
10	Near-Infrared Time-Resolved Spectroscopy for Assessing Brown Adipose Tissue Density in Humans: A Review. Frontiers in Endocrinology, 2020, 11, 261.	3 . 5	14
11	An optimal condition for the evaluation of human brown adipose tissue by infrared thermography. PLoS ONE, 2019, 14, e0220574.	2.5	22
12	BCAA catabolism in brown fat controls energy homeostasis through SLC25A44. Nature, 2019, 572, 614-619.	27.8	332
13	Association of circulating exosomal miR-122 levels with BAT activity in healthy humans. Scientific Reports, 2019, 9, 13243.	3.3	18
14	Fatâ€specific protein 27α inhibits autophagyâ€dependent lipid droplet breakdown in white adipocytes. Journal of Diabetes Investigation, 2019, 10, 1419-1429.	2.4	2
15	Interaction of Nerve Growth Factor \hat{I}^2 with Adiponectin and SPARC Oppositely Modulates its Biological Activity. International Journal of Molecular Sciences, 2019, 20, 1541.	4.1	7
16	Translational Aspects of Brown Fat Activation by Food-Derived Stimulants. Handbook of Experimental Pharmacology, 2018, 251, 359-379.	1.8	13
17	Cell-cycle arrest in mature adipocytes impairs BAT development but not WAT browning, and reduces adaptive thermogenesis in mice. Scientific Reports, 2017, 7, 6648.	3.3	21
18	Cell death-inducing DNA fragmentation factor A-like effector A and fat-specific protein $27\hat{l}^2$ coordinately control lipid droplet size in brown adipocytes. Journal of Biological Chemistry, 2017, 292, 10824-10834.	3.4	19

#	Article	IF	CITATIONS
19	Progesterone dose-dependently modulates hepatocyte growth factor production in 3T3-L1 mouse preadipocytes. Endocrine Journal, 2017, 64, 777-785.	1.6	1
20	Activation and recruitment of brown adipose tissue by cold exposure and food ingredients in humans. Best Practice and Research in Clinical Endocrinology and Metabolism, 2016, 30, 537-547.	4.7	46
21	Brown adipose tissue is involved in the seasonal variation of cold-induced thermogenesis in humans. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R999-R1009.	1.8	75
22	Brown adipose tissue expresses uncoupling protein 1 in newborn harbor seals (<i>Phoca vitulina</i>). Marine Mammal Science, 2015, 31, 818-827.	1.8	3
23	Determination of serum lipoprotein lipase using a latex particle-enhanced turbidimetric immunoassay with an automated analyzer. Clinica Chimica Acta, 2015, 442, 130-135.	1.1	23
24	Food Ingredients as Anti-Obesity Agents. Trends in Endocrinology and Metabolism, 2015, 26, 585-587.	7.1	40
25	Roles of Brown Adipose Tissue in Seasonal Variations of Thermogenesis in Men. FASEB Journal, 2015, 29, 993.15.	0.5	2
26	Serum DJ-1 level is positively associated with improvements in some aspects of metabolic syndrome in Japanese women through lifestyle intervention. Nutrition Research, 2014, 34, 851-855.	2.9	7
27	Human brown adipose tissue: regulation and anti-obesity potential [Review]. Endocrine Journal, 2014, 61, 409-416.	1.6	34
28	Capsinoids and related food ingredients activating brown fat thermogenesis and reducing body fat in humans. Current Opinion in Lipidology, 2013, 24, 71-77.	2.7	111
29	Recruited brown adipose tissue as an antiobesity agent in humans. Journal of Clinical Investigation, 2013, 123, 3404-3408.	8.2	792
30	Thermogenic Ability of Uncoupling Protein 1 in Beige Adipocytes in Mice. PLoS ONE, 2013, 8, e84229.	2.5	67
31	Brown Adipose Tissue as a Regulator of Energy Expenditure and Body Fat in Humans. Diabetes and Metabolism Journal, 2013, 37, 22.	4.7	113
32	Evodiamine Inhibits Insulin-Stimulated mTOR-S6K Activation and IRS1 Serine Phosphorylation in Adipocytes and Improves Glucose Tolerance in Obese/Diabetic Mice. PLoS ONE, 2013, 8, e83264.	2.5	38
33	Production of Functional Classical Brown Adipocytes from Human Pluripotent Stem Cells using Specific Hemopoietin Cocktail without Gene Transfer. Cell Metabolism, 2012, 16, 394-406.	16.2	142
34	Activation of brown adipose tissue by acute and chronic administrations of capsinoids in humans. FASEB Journal, 2012, 26, 252.4.	0.5	1
35	Brown Adipose Tissue, Wholeâ€Body Energy Expenditure, and Thermogenesis in Healthy Adult Men. Obesity, 2011, 19, 13-16.	3.0	351
36	Ageâ€Related Decrease in Coldâ€Activated Brown Adipose Tissue and Accumulation of Body Fat in Healthy Humans. Obesity, 2011, 19, 1755-1760.	3.0	402

#	Article	IF	Citations
37	High Incidence of Metabolically Active Brown Adipose Tissue in Healthy Adult Humans. Diabetes, 2009, 58, 1526-1531.	0.6	1,650
38	Expression of Uncoupling Proteins in Human Skin and Skin-Derived Cells. Journal of Investigative Dermatology, 2008, 128, 1894-1900.	0.7	26
39	Day–night difference in β3-adrenoceptor agonist-induced energy expenditure: Contribution of brown fat thermogenesis and physical activity. Obesity Research and Clinical Practice, 2007, 1, 61-67.	1.8	4
40	Uncoupling protein 1 contributes to fat-reducing effect of leptin. Obesity Research and Clinical Practice, 2007, 1, 233-241.	1.8	20
41	Indispensable role of mitochondrial UCP1 for antiobesity effect of \hat{l}^2 3-adrenergic stimulation. American Journal of Physiology - Endocrinology and Metabolism, 2006, 290, E1014-E1021.	3.5	123
42	Uncoupling Protein 1 Is Necessary for Norepinephrine-Induced Glucose Utilization in Brown Adipose Tissue. Diabetes, 2005, 54, 1385-1391.	0.6	155
43	Canine mitochondrial uncoupling proteins: structure and mRNA expression of three isoforms in adult beagles. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2002, 131, 483-489.	1.6	10
44	Up-regulation of uncoupling proteins by \hat{l}^2 -adrenergic stimulation in L6 myotubes. FEBS Letters, 2001, 494, 175-180.	2.8	46
45	.BETA.3-Adrenergic Agonist Up-Regulates Uncoupling Proteins 2 and 3 in Skeletal Muscle of the Mouse Journal of Veterinary Medical Science, 2001, 63, 309-314.	0.9	32
46	Postnatal Development of Glucose Transporter Proteins in Bovine Skeletal Muscle and Adipose Tissue Journal of Veterinary Medical Science, 2001, 63, 1071-1075.	0.9	19
47	cDNA Cloning of Feline Leptin and Its mRNA Expression in Adipose Tissue Journal of Veterinary Medical Science, 2001, 63, 1115-1120.	0.9	15
48	Genomic organization, chromosomal localization, and promoter analysis of the mouse Mail gene. Immunogenetics, 2001, 53, 649-655.	2.4	20
49	MAIL, a novel nuclear IκB protein that potentiates LPS-induced IL-6 production. FEBS Letters, 2000, 485, 53-56.	2.8	138
50	Neuronal and glial differentiation of neuroblastoma and glioma cells by Rho inhibitory bacterial exo-enzyme C3. Neuropathology, 1999, 19, 288-293.	1.2	1
51	Mechanism of decrease in levels of hepatic P450 isozymes induced by intracerebral endotoxin: independence from sympathetic nervous and adrenocortical systems. Archives of Toxicology, 1999, 73, 41-49.	4.2	17
52	Induction of uncoupling protein (UCP) 2 in primary cultured hepatocytes. FEBS Letters, 1999, 457, 75-79.	2.8	20
53	Up-regulation of uncoupling protein 3 by thyroid hormone, peroxisome proliferator-activated receptor ligands and 9-cis retinoic acid in L6 myotubes. FEBS Letters, 1999, 461, 319-322.	2.8	72
54	Immortal Brown Adipocytes fromp53-Knockout Mice: Differentiation and Expression of Uncoupling Proteins. Biochemical and Biophysical Research Communications, 1999, 255, 221-225.	2.1	66

#	Article	IF	CITATIONS
55	Differential alterations in levels of hepatic microsomal cytochrome P450 isozymes following intracerebroventricular injection of bacterial lipopolysaccharide in rats. Archives of Toxicology, 1998, 72, 492-498.	4.2	29
56	Acute and Chronic Regulation of ob mRNA Levels by .BETA.3-Adrenoceptor Agonists in Obese Yellow KK Mice Endocrine Journal, 1998, 45, 647-651.	1.6	5
57	Comparison of Amino Acid Sequence of the C-Terminal Domain of Insulin-Responsive Glucose Transporter (GLUT4) in Livestock Mammals Journal of Veterinary Medical Science, 1998, 60, 769-771.	0.9	9
58	Anti-Obesity Effects of Selective Agonists to the .BETA.3-Adrenergic Receptor in Dogs. II. Recruitment of Thermogenic Brown Adipocytes and Reduction of Adiposity after Chronic Treatment with a .BETA.3-Adrenergic Agonist Journal of Veterinary Medical Science, 1998, 60, 465-469.	0.9	28
59	Adrenergic activation of vascular endothelial growth factor mRNA expression in rat brown adipose tissue: implication in cold-induced angiogenesis. Biochemical Journal, 1997, 328, 179-183.	3.7	80
60	Roles of Prostaglandins D ₂ and E ₂ in Interleukinâ€1â€Induced Activation of Norepinephrine Turnover in the Brain and Peripheral Organs of Rats. Journal of Neurochemistry, 1995, 65, 2742-2747.	3.9	31
61	Possible role of IL-6 in IL-1-induced plasma iron and corticosterone responses in rats . Biomedical Research, 1993, 14, 301-303.	0.9	2
62	Sympathetic Activation of Glucose Utilization in Brown Adipose Tissue in Rats1. Journal of Biochemistry, 1991, 110, 688-692.	1.7	71
63	Effects of Total Enteral Nutrition on Orcadian Cortisol Rhythm. Psychiatry and Clinical Neurosciences, 1990, 44, 179-179.	1.8	0
64	Accelerated norepinephrine turnover in peripheral tissues after ventromedial hypothalamic stimulation in rats. Brain Research, 1989, 481, 298-303.	2.2	79