Renjie Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9596829/publications.pdf

Version: 2024-02-01

516710 642732 23 608 16 23 citations g-index h-index papers 24 24 24 902 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Sensing of inorganic ions in microfluidic devices. Sensors and Actuators B: Chemical, 2021, 329, 129171.	7.8	28
2	Digital printing of selective and reversible ion optodes on fabrics: toward smart clothes for epidermal chemical sensing. Analyst, The, 2021, 146, 6119-6123.	3.5	4
3	Ion-Induced Phase Transfer of Cationic Dyes for Fluorescence-Based Electrolyte Sensing in Droplet Microfluidics. Analytical Chemistry, 2021, 93, 13694-13702.	6.5	6
4	Ionophore-Based Ion-Selective Nanosensors from Brush Block Copolymer Nanodots. ACS Applied Nano Materials, 2020, 3, 782-788.	5.0	19
5	lonophore-based pH independent detection of ions utilizing aggregation-induced effects. Analyst, The, 2020, 145, 3846-3850.	3.5	16
6	Rapid Equilibrated Colorimetric Detection of Protamine and Heparin: Recognition at the Nanoscale Liquid–Liquid Interface. Analytical Chemistry, 2019, 91, 10390-10394.	6.5	28
7	A rapid point-of-care optical ion sensing platform based on target-induced dye release from smart hydrogels. Chemical Communications, 2019, 55, 1774-1777.	4.1	31
8	Distance and Color Change Based Hydrogel Sensor for Visual Quantitative Determination of Buffer Concentrations. ACS Sensors, 2019, 4, 1017-1022.	7.8	22
9	Impedimetric detection of bacteria by using a microfluidic chip and silver nanoparticle based signal enhancement. Mikrochimica Acta, 2018, 185, 184.	5.0	37
10	Exploring the antiâ€quorum sensing activity of a <scp>d</scp> â€limonene nanoemulsion for <i>Escherichia coli</i> O157:H7. Journal of Biomedical Materials Research - Part A, 2018, 106, 1979-1986.	4.0	20
11	A Plasticizer-Free Miniaturized Optical Ion Sensing Platform with Ionophores and Silicon-Based Particles. Analytical Chemistry, 2018, 90, 5818-5824.	6.5	38
12	Label-free impedimetric glycan biosensor for quantitative evaluation interactions between pathogenic bacteria and mannose. Biosensors and Bioelectronics, 2018, 103, 94-98.	10.1	36
13	Graphene Quantum Dots Integrated in Ionophore-Based Fluorescent Nanosensors for Na ⁺ and K ⁺ . ACS Sensors, 2018, 3, 2408-2414.	7.8	38
14	An integrated microsystem with dielectrophoresis enrichment and impedance detection for detection of Escherichia coli. Biomedical Microdevices, 2017, 19, 34.	2.8	16
15	Rapid fluorescence detection of pathogenic bacteria using magnetic enrichment technique combined with magnetophoretic chromatography. Analytical and Bioanalytical Chemistry, 2017, 409, 4709-4718.	3.7	14
16	A microfluidic chip based on an ITO support modified with Ag-Au nanocomposites for SERS based determination of melamine. Mikrochimica Acta, 2017, 184, 279-287.	5.0	43
17	Basic studies on epigenetic carcinogenesis of low-dose exposure to 1-trichloromethyl-1,2,3,4-tetrahydro-β-carboline (TaClo) in vitro. PLoS ONE, 2017, 12, e0172243.	2.5	2
18	Sensitive determination of pyrrolizidine alkaloids in <i>Tussilago farfara</i> L. by field-amplified, sample-stacking, sweeping micellar electrokinetic chromatography. Journal of Separation Science, 2016, 39, 4243-4250.	2.5	16

RENJIE WANG

#	Article	IF	CITATIONS
19	Rapid and sensitive detection of Salmonella typhimurium using aptamer-conjugated carbon dots as fluorescence probe. Analytical Methods, 2015, 7, 1701-1706.	2.7	103
20	Fabrication of ITO-rGO/Ag NPs nanocomposite by two-step chronoamperometry electrodeposition and its characterization as SERS substrate. Applied Surface Science, 2015, 349, 805-810.	6.1	24
21	Detection of Staphylococcus aureus using acridine orange-doped silica nanoparticles as a fluorescent label. RSC Advances, 2015, 5, 54338-54344.	3.6	8
22	Immuno-capture and in situ detection of Salmonella typhimurium on a novel microfluidic chip. Analytica Chimica Acta, 2015, 853, 710-717.	5 . 4	31
23	Sensitive quantification and visual detection of bacteria using CdSe/ZnS@SiO ₂ nanoparticles as fluorescent probes. Analytical Methods, 2014, 6, 6802-6808.	2.7	28