Zhuqun Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9596048/publications.pdf Version: 2024-02-01

5.5

10.2

27

19

#	Article	IF	CITATIONS
1	Porous cellulose composite aerogel films with super piezoelectric properties for energy harvesting. Carbohydrate Polymers, 2022, 288, 119407.	10.2	45
2	Highly Sensitive Multifunctional Electronic Skin Based on Nanocellulose/MXene Composite Films with Good Electromagnetic Shielding Biocompatible Antibacterial Properties. Biomacromolecules, 2022, 23, 182-195.	5.4	41
3	Forward polarization enhanced all-polymer based sustainable triboelectric nanogenerator from oriented electrospinning PVDF/cellulose nanofibers for energy harvesting. Sustainable Energy and Fuels, 2022, 6, 2377-2386.	4.9	26
4	Fabrication of carbon nanofibril/carbon nanotube composites with high sulfur loading from nanocellulose for high-performance lithium‑sulfur batteries. Diamond and Related Materials, 2022, 126, 109137.	3.9	1
5	Recent advances in cellulose-based piezoelectric and triboelectric nanogenerators for energy harvesting: a review. Journal of Materials Chemistry A, 2021, 9, 1910-1937.	10.3	168
6	High-performance nanogenerators based on flexible cellulose nanofibril/MoS2 nanosheet composite piezoelectric films for energy harvesting. Nano Energy, 2021, 80, 105541.	16.0	100
7	Antifreezing ionotronic skin based on flexible, transparent, and tunable ionic conductive nanocellulose hydrogels. Cellulose, 2021, 28, 5657.	4.9	18
8	Flexible and environment-friendly regenerated cellulose/MoS2 nanosheet nanogenerators with high piezoelectricity and output performance. Cellulose, 2021, 28, 6513-6522.	4.9	10
9	In-situ synthesis of flexible nanocellulose/carbon nanotube/polypyrrole hydrogels for high-performance solid-state supercapacitors. Cellulose, 2021, 28, 7097-7108.	4.9	24
10	Flexible and sensitive piezoresistive electronic skin based on <scp>TOCN</scp> / <scp>PPy</scp> hydrogel films. Journal of Applied Polymer Science, 2021, 138, 51367.	2.6	16
11	Regenerated cellulose/layered double hydroxide nanocomposite films with improved mechanical property. Journal of Applied Polymer Science, 2021, 138, 51448.	2.6	3
12	Fe3O4Ânanoparticle/highÂresidualÂcarbonÂnanofibrilÂaerogelsÂforÂanodeÂmaterialÂofÂlithium-ionÂbatteryÂw Ionics, 2021, 27, 4225-4232.	ithÂenhan 2.4	cedÂcapacity
13	Regenerated Cellulose/NaNbO ₃ Nanowire Dielectric Composite Films with Superior Discharge Energy Density and Efficiency. ACS Applied Energy Materials, 2021, 4, 8150-8157.	5.1	18
14	Fabrication of porous carbon nanofibril/MnO2 composite aerogels from TEMPO-oxidized cellulose nanofibrils for high-performance supercapacitors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 127003.	4.7	17
	Elevible collulose/alumina (AI2O3) papercomposite films with enhanced energy density and efficiency		

16

18

for dielectric capacitors. Cellulose, 2021, 28, 1541-1553.

Achieving high-performance energy harvesting and self-powered sensing in a flexible cellulose nanofibril/MoS₂/BaTiO₃ composite piezoelectric nanogenerator. Journal of Materials Chemistry C, 2021, 9, 15552-15565.

Transparent and flexible cellulose dielectric films with high breakdown strength and energy density. Energy Storage Materials, 2020, 26, 105-111.

Cellulose/BaTiO3 nanofiber dielectric films with enhanced energy density by interface modification with poly(dopamine). Carbohydrate Polymers, 2020, 249, 116883.

Zhuqun Shi

#	Article	IF	CITATIONS
19	Flexible electronic skin sensor based on regenerated cellulose/carbon nanotube composite films. Cellulose, 2020, 27, 10199-10211.	4.9	41
20	Chitin/MoS ₂ Nanosheet Dielectric Composite Films with Significantly Enhanced Discharge Energy Density and Efficiency. Biomacromolecules, 2020, 21, 2929-2937.	5.4	40
21	Supertough and ultrasensitive flexible electronic skin based on nanocellulose/sulfonated carbon nanotube hydrogel films. Journal of Materials Chemistry A, 2020, 8, 6311-6318.	10.3	96
22	Facile fabrication of Fe3O4 nanoparticle/carbon nanofiber aerogel from Fe-ion cross-linked cellulose nanofibrils as anode for lithium-ion battery with superhigh capacity. Journal of Alloys and Compounds, 2020, 829, 154541.	5.5	31
23	Necklace-like ferroferric oxide (Fe3O4) nanoparticle/carbon nanofibril aerogels with enhanced lithium storage by carbonization of ferric alginate. Journal of Colloid and Interface Science, 2020, 576, 119-126.	9.4	21
24	Carboxylated nanocellulose/poly(ethylene oxide) composite films as solid–solid phase-change materials for thermal energy storage. Carbohydrate Polymers, 2019, 225, 115215.	10.2	32
25	Doubly cross-linked nanocellulose hydrogels with excellent mechanical properties. Cellulose, 2019, 26, 8645-8654.	4.9	39
26	Transparent konjac glucomannan/cellulose nanofibril composite films with improved mechanical properties and thermal stability. Cellulose, 2019, 26, 3155-3165.	4.9	21
27	Flexible Cellulose/BaTiO ₃ Nanocomposites with High Energy Density for Film Dielectric Capacitor. ACS Sustainable Chemistry and Engineering, 2019, 7, 10641-10648.	6.7	64
28	Flexible Regenerated Cellulose/Boron Nitride Nanosheet High-Temperature Dielectric Nanocomposite Films with High Energy Density and Breakdown Strength. ACS Sustainable Chemistry and Engineering, 2018, 6, 7151-7158.	6.7	121
29	Cellulose nanofibril/boron nitride nanosheet composites with enhanced energy density and thermal stability by interfibrillar cross-linking through Ca ²⁺ . Journal of Materials Chemistry A, 2018, 6, 1403-1411.	10.3	127
30	Luminescent and Transparent Nanocellulose Films Containing Europium Carboxylate Groups as Flexible Dielectric Materials. ACS Applied Nano Materials, 2018, 1, 4972-4979.	5.0	33
31	Dissolution of Wood Pulp in Aqueous NaOH/Urea Solution via Dilute Acid Pretreatment. Journal of Agricultural and Food Chemistry, 2015, 63, 6113-6119.	5.2	35
32	Creation of a new material stream from Japanese cedar resources to cellulose nanofibrils. Reactive and Functional Polymers, 2015, 95, 19-24.	4.1	17
33	Effects of lignin and hemicellulose contents on dissolution of wood pulp in aqueous NaOH/urea solution. Cellulose, 2014, 21, 1205-1215.	4.9	30
34	Electrode materials from cuprous oxide and chitin nanofibrils for supercapacitors with high specific capacity. lonics, 0, , 1.	2.4	5