Maarten E Witte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9595082/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Breaching Brain Barriers: B Cell Migration in Multiple Sclerosis. Biomolecules, 2022, 12, 800.	4.0	7
2	Neuron-specific activation of necroptosis signaling in multiple sclerosis cortical grey matter. Acta Neuropathologica, 2021, 141, 585-604.	7.7	56
3	Enhancing mitochondrial activity in neurons protects against neurodegeneration in a mouse model of multiple sclerosis. ELife, 2021, 10, .	6.0	34
4	Meningeal inflammation in multiple sclerosis induces phenotypic changes in cortical microglia that differentially associate with neurodegeneration. Acta Neuropathologica, 2021, 141, 881-899.	7.7	47
5	Inflammation of the choroid plexus in progressive multiple sclerosis: accumulation of granulocytes and T cells. Acta Neuropathologica Communications, 2020, 8, 9.	5.2	45
6	Setmelanotide, a Novel, Selective Melanocortin Receptor-4 Agonist Exerts Anti-inflammatory Actions in Astrocytes and Promotes an Anti-inflammatory Macrophage Phenotype. Frontiers in Immunology, 2019, 10, 2312.	4.8	19
7	Calcium Influx through Plasma-Membrane Nanoruptures Drives Axon Degeneration in a Model of Multiple Sclerosis. Neuron, 2019, 101, 615-624.e5.	8.1	63
8	Inflammation and mitochondrial dysfunction: A vicious circle in neurodegenerative disorders?. Neuroscience Letters, 2019, 710, 132931.	2.1	168
9	A Defective Pentose Phosphate Pathway Reduces Inflammatory Macrophage Responses during Hypercholesterolemia. Cell Reports, 2018, 25, 2044-2052.e5.	6.4	140
10	Experimental models of cortical multiple sclerosis pathology. Drug Discovery Today: Disease Models, 2017, 25-26, 69-74.	1.2	0
11	Astroglial PGC-1alpha increases mitochondrial antioxidant capacity and suppresses inflammation: implications for multiple sclerosis. Acta Neuropathologica Communications, 2014, 2, 170.	5.2	72
12	Glutathione in multiple sclerosis: More than just an antioxidant?. Multiple Sclerosis Journal, 2014, 20, 1425-1431.	3.0	78
13	Mitochondrial dysfunction contributes to neurodegeneration in multiple sclerosis. Trends in Molecular Medicine, 2014, 20, 179-187.	6.7	225
14	Cellular distribution of glucose and monocarboxylate transporters in human brain white matter and multiple sclerosis lesions. Clia, 2014, 62, 1125-1141.	4.9	88
15	Demyelination during multiple sclerosis is associated with combined activation of microglia/macrophages by IFN-γ and alpha B-crystallin. Acta Neuropathologica, 2014, 128, 215-229.	7.7	73
16	Reduced expression of PGC-1α partly underlies mitochondrial changes and correlates with neuronal loss in multiple sclerosis cortex. Acta Neuropathologica, 2013, 125, 231-243.	7.7	114
17	The role of mitochondria in axonal degeneration and tissue repair in MS. Multiple Sclerosis Journal, 2012, 18, 1058-1067.	3.0	60
18	Myelin Basic Protein synthesis is regulated by small nonâ€coding RNA 715. EMBO Reports, 2012, 13, 827-834.	4.5	31

MAARTEN E WITTE

#	Article	IF	CITATIONS
19	Fingolimod attenuates ceramide-induced blood–brain barrier dysfunction in multiple sclerosis by targeting reactive astrocytes. Acta Neuropathologica, 2012, 124, 397-410.	7.7	101
20	Clusters of activated microglia in normal-appearing white matter show signs of innate immune activation. Journal of Neuroinflammation, 2012, 9, 156.	7.2	153
21	Effect of ammonia in cigarette tobacco on nicotine absorption in human smokers. Food and Chemical Toxicology, 2011, 49, 3025-3030.	3.6	19
22	Radical changes in multiple sclerosis pathogenesis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 141-150.	3.8	269
23	Association of Parkinson disease-related protein PINK1 with Alzheimer disease and multiple sclerosis brain lesions. Free Radical Biology and Medicine, 2011, 50, 469-476.	2.9	51
24	Adenosine triphosphate-binding cassette transporters mediate chemokine (C-C motif) ligand 2 secretion from reactive astrocytes: relevance to multiple sclerosis pathogenesis. Brain, 2011, 134, 555-570.	7.6	77
25	Sphingosine 1â€phosphate receptor 1 and 3 are upregulated in multiple sclerosis lesions. Clia, 2010, 58, 1465-1476.	4.9	181
26	Multiple sclerosis as an "Insideâ€out―disease. Annals of Neurology, 2010, 68, 767-768.	5.3	13
27	Mitochondrial dysfunction: A potential link between neuroinflammation and neurodegeneration?. Mitochondrion, 2010, 10, 411-418.	3.4	201
28	Parkinson's disease-associated parkin colocalizes with Alzheimer's disease and multiple sclerosis brain lesions. Neurobiology of Disease, 2009, 36, 445-452.	4.4	48
29	Enhanced number and activity of mitochondria in multiple sclerosis lesions. Journal of Pathology, 2009, 219, 193-204.	4.5	178
30	Abundant extracellular myelin in the meninges of patients with multiple sclerosis. Neuropathology and Applied Neurobiology, 2009, 35, 283-295.	3.2	39
31	Nrf2-induced antioxidant protection: A promising target to counteract ROS-mediated damage in neurodegenerative disease?. Free Radical Biology and Medicine, 2008, 45, 1375-1383.	2.9	377