Panpan Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9594931/publications.pdf Version: 2024-02-01

<u> </u>

#	Article	IF	CITATIONS
1	Study of efficient semipolar (11-22) InGaN green micro-light-emitting diodes on high-quality (11-22) GaN/sapphire template. Optics Express, 2019, 27, 24154.	3.4	43
2	Size-independent peak external quantum efficiency (>2%) of InGaN red micro-light-emitting diodes with an emission wavelength over 600 nm. Applied Physics Letters, 2021, 119, .	3.3	39
3	Red InGaN micro-light-emitting diodes (&gt; 620 nm) with a peak external quantum efficiency of 4.5% using an epitaxial tunnel junction contact. Applied Physics Letters, 2022, 120, .	3.3	33
4	Size-independent low voltage of InGaN micro-light-emitting diodes with epitaxial tunnel junctions using selective area growth by metalorganic chemical vapor deposition. Optics Express, 2020, 28, 18707.	3.4	26
5	Metalorganic chemical vapor deposition grown n-InGaN/n-GaN tunnel junctions for micro-light-emitting diodes with very low forward voltage. Semiconductor Science and Technology, 2020, 35, 125023.	2.0	23
6	Progress of InGaN-Based Red Micro-Light Emitting Diodes. Crystals, 2022, 12, 541.	2.2	23
7	High-temperature electroluminescence properties of InGaN red 40 × 40 <i>μ</i> m2 micro-light-emitting diodes with a peak external quantum efficiency of 3.2%. Applied Physics Letters, 2021, 119, .	3.3	21
8	Analysis Model for Efficiency Droop of InGaN Light-Emitting Diodes Based on Reduced Effective Volume of Active Region by Carrier Localization. Applied Physics Express, 2013, 6, 092101.	2.4	18
9	Demonstration of high efficiency cascaded blue and green micro-light-emitting diodes with independent junction control. Applied Physics Letters, 2021, 118, .	3.3	17
10	Demonstration of ultra-small 5 × 5 <i>μ</i> m2 607 nm InGaN amber micro-light-emitting diodes with an external quantum efficiency over 2%. Applied Physics Letters, 2022, 120, .	3.3	13
11	Metalorganic chemical vapor deposition-grown tunnel junctions for low forward voltage InGaN light-emitting diodes: epitaxy optimization and light extraction simulation. Semiconductor Science and Technology, 2021, 36, 035019.	2.0	9
12	Fully transparent metal organic chemical vapor deposition-grown cascaded InGaN micro-light-emitting diodes with independent junction control. Optics Express, 2021, 29, 22001.	3.4	9
13	Effects of activation method and temperature to III-nitride micro-light-emitting diodes with tunnel junction contacts grown by metalorganic chemical vapor deposition. Applied Physics Letters, 2021, 119,	3.3	7
14	Size dependent characteristics of AlGaN-based deep ultraviolet micro-light-emitting-diodes. Applied Physics Express, 2022, 15, 064003.	2.4	7