
Theodore J Lampidis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9594858/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	2â€Deoxyâ€ <scp>d</scp> â€glucose exploits increased glucose metabolism in cancer and viralâ€infected cells: Relevance to its use in <scp>India</scp> against <scp>SARSâ€CoV</scp> â€2. IUBMB Life, 2021, 73, 1198-1204.	3.4	17
2	Targeting the Kynurenine Pathway for the Treatment of Cisplatin-Resistant Lung Cancer. Molecular Cancer Research, 2020, 18, 105-117.	3.4	33
3	2-Deoxy-Glucose Downregulates Endothelial AKT and ERK via Interference with N-Linked Glycosylation, Induction of Endoplasmic Reticulum Stress, and GSK3β Activation. Molecular Cancer Therapeutics, 2016, 15, 264-275.	4.1	26
4	Combining 2-deoxy-D-glucose with fenofibrate leads to tumor cell death mediated by simultaneous induction of energy and ER stress. Oncotarget, 2016, 7, 36461-36473.	1.8	19
5	<scp>ATF</scp> 4 mediates necrosis induced by glucose deprivation and apoptosis induced by 2â€deoxyglucose in the same cells. FEBS Journal, 2015, 282, 3647-3658.	4.7	31
6	Mcl-1 downregulation leads to the heightened sensitivity exhibited by BCR-ABL positive ALL to induction of energy and ER-stress. Leukemia Research, 2015, 39, 1246-1254.	0.8	10
7	The wonders of 2â€deoxyâ€≺scp>dâ€glucose. IUBMB Life, 2014, 66, 110-121.	3.4	90
8	Increased sensitivity to glucose starvation correlates with downregulation of glycogen phosphorylase isoform PYGB in tumor cell lines resistant to 2-deoxy-d-glucose. Cancer Chemotherapy and Pharmacology, 2014, 73, 349-361.	2.3	21
9	Targeting cisplatin-resistant human tumor cells with metabolic inhibitors. Cancer Chemotherapy and Pharmacology, 2014, 73, 417-427.	2.3	40
10	BCR-ABL+ Bp-ALL Exhibits Heightened Sensitivity to Simultaneous Induction of Energy and ER Stress Via Downregulation of Mcl-1 Expression. Blood, 2014, 124, 916-916.	1.4	0
11	A phase I dose-escalation trial of 2-deoxy-d-glucose alone or combined with docetaxel in patients with advanced solid tumors. Cancer Chemotherapy and Pharmacology, 2013, 71, 523-530.	2.3	362
12	Endoplasmic reticulum stress induced by 2-deoxyglucose but not glucose starvation activates AMPK through CaMKKl² leading to autophagy. Biochemical Pharmacology, 2013, 85, 1463-1477.	4.4	55
13	Models and discovery strategies for new therapies of retinoblastoma. Expert Opinion on Drug Discovery, 2013, 8, 383-394.	5.0	18
14	Conversion of 2-deoxyglucose-induced growth inhibition to cell death in normoxic tumor cells. Cancer Chemotherapy and Pharmacology, 2013, 72, 251-262.	2.3	19
15	Activation of the Unfolded Protein Response by 2-Deoxy- <scp>d</scp> -Glucose Inhibits Kaposi's Sarcoma-Associated Herpesvirus Replication and Gene Expression. Antimicrobial Agents and Chemotherapy, 2012, 56, 5794-5803.	3.2	49
16	Retinoblastoma treatment: impact of the glycolytic inhibitor 2-deoxy-d-glucose on molecular genomics expression in LHBETATAG retinal tumors. Clinical Ophthalmology, 2012, 6, 817.	1.8	4
17	The Relationship of Thioredoxin-1 and Cisplatin Resistance: Its Impact on ROS and Oxidative Metabolism in Lung Cancer Cells. Molecular Cancer Therapeutics, 2012, 11, 604-615.	4.1	73
18	Inhibition of Akt Potentiates 2-DG–Induced Apoptosis via Downregulation of UPR in Acute Lymphoblastic Leukemia. Molecular Cancer Research, 2012, 10, 969-978.	3.4	52

#	Article	IF	CITATIONS
19	Novel retinoblastoma treatment avoids chemotherapy: the effect of optimally timed combination therapy with angiogenic and glycolytic inhibitors on LHBETATAG retinoblastoma tumors. Clinical Ophthalmology, 2011, 5, 129.	1.8	11
20	2-Deoxy-d-glucose activates autophagy via endoplasmic reticulum stress rather than ATP depletion. Cancer Chemotherapy and Pharmacology, 2011, 67, 899-910.	2.3	168
21	High endoplasmic reticulum activity renders multiple myeloma cells hypersensitive to mitochondrial inhibitors. Cancer Chemotherapy and Pharmacology, 2010, 66, 129-140.	2.3	18
22	Focal, Periocular Delivery of 2-Deoxy- <scp>d</scp> -Glucose as Adjuvant to Chemotherapy for Treatment of Advanced Retinoblastoma. , 2010, 51, 6149.		18
23	Antiangiogenic Activity of 2-Deoxy-D-Glucose. PLoS ONE, 2010, 5, e13699.	2.5	92
24	Increased Hypoxia following Vessel Targeting in a Murine Model of Retinoblastoma. , 2009, 50, 5537.		20
25	From delocalized lipophilic cations to hypoxia: Blocking tumor cell mitochondrial function leads to therapeutic gain with glycolytic inhibitors. Molecular Nutrition and Food Research, 2009, 53, 68-75.	3.3	65
26	Targeting Hypoxia, a Novel Treatment for Advanced Retinoblastoma. , 2008, 49, 2799.		69
27	Intrinsically lower AKT, mammalian target of rapamycin, and hypoxia-inducible factor activity correlates with increased sensitivity to 2-deoxy- <scp>d</scp> -glucose under hypoxia in lung cancer cell lines. Molecular Cancer Therapeutics, 2008, 7, 1506-1513.	4.1	33
28	Hypoxia-inducible factor-1 confers resistance to the glycolytic inhibitor 2-deoxy- <scp>d</scp> -glucose. Molecular Cancer Therapeutics, 2007, 6, 732-741.	4.1	96
29	Differential Toxic Mechanisms of 2-Deoxy-D-Glucose <i>versus</i> 2-Fluorodeoxy-D -Glucose in Hypoxic and Normoxic Tumor Cells. Antioxidants and Redox Signaling, 2007, 9, 1383-1390.	5.4	136
30	Under normoxia, 2-deoxy- <scp>d</scp> -glucose elicits cell death in select tumor types not by inhibition of glycolysis but by interfering with N-linked glycosylation. Molecular Cancer Therapeutics, 2007, 6, 3049-3058.	4.1	210
31	Efficacy of 2-halogen substituted d-glucose analogs in blocking glycolysis and killing "hypoxic tumor cells― Cancer Chemotherapy and Pharmacology, 2006, 58, 725-734.	2.3	67
32	Differential Sensitivity to 2-Deoxy-D-glucose Between Two Pancreatic Cell Lines Correlates With GLUT-1 Expression. Pancreas, 2005, 30, e34-e39.	1.1	40
33	2-Deoxy-d-glucose Increases the Efficacy of Adriamycin and Paclitaxel in Human Osteosarcoma and Non-Small Cell Lung Cancers In Vivo. Cancer Research, 2004, 64, 31-34.	0.9	414
34	Greater cell cycle inhibition and cytotoxicity induced by 2-deoxy-d-glucose in tumor cells treated under hypoxic vs aerobic conditions. Cancer Chemotherapy and Pharmacology, 2004, 53, 116-122.	2.3	190
35	Multidrug resistance correlates with overexpression of Muc4 but inversely with P-glycoprotein and multidrug resistance related protein in transfected human melanoma cells. Biochemical Pharmacology, 2003, 65, 1419-1425.	4.4	22
36	Hypoxia increases tumor cell sensitivity to glycolytic inhibitors: a strategy for solid tumor therapy (Model C). Biochemical Pharmacology, 2002, 64, 1745-1751.	4.4	77

THEODORE J LAMPIDIS

#	Article	IF	CITATIONS
37	ïO tumor cells: a model for studying whether mitochondria are targets for rhodamine 123, doxorubicin, and other drugs. Biochemical Pharmacology, 2000, 60, 1897-1905.	4.4	35
38	Antiproliferative activity of taxol on human tumor and normal breast cellsvs. effects on cardiac cells. International Journal of Cancer, 1995, 60, 571-575.	5.1	10
39	α-Smooth muscle actin expression in cultured cardiac fibroblasts of newborn rat. In Vitro Cellular & Developmental Biology, 1992, 28, 293-296.	1.0	9
40	Relevance of the chemical charge of rhodamine dyes to multiple drug resistance. Biochemical Pharmacology, 1989, 38, 4267-4271.	4.4	72
41	Interaction of rhodamine 123 with mitochondria isolated from drug-sensitive and -resistant friend leukemia cells. Biochemical and Biophysical Research Communications, 1985, 127, 1039-1044.	2.1	31
42	Effects of the mitochondrial probe rhodamine 123 and related analogs on the function and viability of pulsating myocardial cells in culture. Agents and Actions, 1984, 14, 751-757.	0.7	48