
João Paulo Trigueiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9594616/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Waste-polystyrene foams-derived magnetic carbon material for adsorption and redox supercapacitor applications. Journal of Cleaner Production, 2021, 313, 127903.	9.3	28
2	Thermochromism in Polydiacetylene/Poly(vinyl alcohol) Hydrogels Obtained by the Freeze–Thaw Method: A Theoretical and Experimental Study. Industrial & Engineering Chemistry Research, 2021, 60, 13243-13252.	3.7	1
3	Insights on the Behavior of Imidazolium Ionic Liquids as Electrolytes in Carbon-Based Supercapacitors: An Applied Electrochemical Approach. Journal of Physical Chemistry C, 2020, 124, 15818-15830.	3.1	34
4	The effect of debris on the adsorption and electron-transfer capacity at the interface of oxidized carbon nanotubes. Chemical Engineering Journal, 2020, 388, 124379.	12.7	16
5	Higher thermal conductivity and mechanical enhancements in hybrid 2D polymer nanocomposites. Polymer Testing, 2020, 87, 106510.	4.8	23
6	A highly adhesive PIL/IL gel polymer electrolyte for use in flexible solid state supercapacitors. Electrochimica Acta, 2019, 299, 789-799.	5.2	63
7	Hybrid MoS2/h-BN Nanofillers As Synergic Heat Dissipation and Reinforcement Additives in Epoxy Nanocomposites. ACS Applied Materials & Interfaces, 2019, 11, 24485-24492.	8.0	38
8	Enhanced thermal conductivity and mechanical properties of hybrid MoS ₂ /hâ€BN polyurethane nanocomposites. Journal of Applied Polymer Science, 2018, 135, 46560.	2.6	29
9	Hybrid 2D nanostructures for mechanical reinforcement and thermal conductivity enhancement in polymer composites. Composites Science and Technology, 2018, 159, 103-110.	7.8	55
10	Graphene oxide – Ionic liquid composite electrolytes for safe and high-performance supercapacitors. Electrochimica Acta, 2018, 259, 783-792.	5.2	26
11	PIL/IL gel polymer electrolytes: The influence of the IL ions on the properties of solid-state supercapacitors. European Polymer Journal, 2018, 108, 452-460.	5.4	20
12	Thermodynamic Study of Methylene Blue Adsorption on Carbon Nanotubes Using Isothermal Titration Calorimetry: A Simple and Rigorous Approach. Journal of Chemical & Engineering Data, 2017, 62, 729-737.	1.9	35
13	Carbon nanotube/dendrimer hybrids as electrodes for supercapacitors. Journal of Solid State Electrochemistry, 2016, 20, 1991-2000.	2.5	8
14	Poly(3-hexylthiophene)-multi-walled carbon nanotube (1:1) hybrids: Structure and electrochemical properties. Electrochimica Acta, 2016, 209, 111-120.	5.2	15
15	Improving supercapacitor capacitance by using a novel gel nanocomposite polymer electrolyte based on nanostructured SiO2, PVDF and imidazolium ionic liquid. Electrochimica Acta, 2016, 188, 809-817.	5.2	101
16	Nanocomposites of Graphene Nanosheets/Multiwalled Carbon Nanotubes as Electrodes for In-plane Supercapacitors. Electrochimica Acta, 2016, 187, 312-322.	5.2	51
17	Supercapacitors based on modified graphene electrodes with poly(ionic liquid). Journal of Power Sources, 2014, 256, 264-273.	7.8	74
18	Layer-by-layer assembled films of multi-walled carbon nanotubes with chitosan and cellulose nanocrystals. Journal of Colloid and Interface Science, 2014, 432, 214-220.	9.4	36

#	Article	IF	CITATIONS
19	Polymeric nanomaterials as electrolyte and electrodes in supercapacitors. Nano Research, 2009, 2, 733-739.	10.4	29
20	Solid state double layer capacitor based on a polyether polymer electrolyte blend and nanostructured carbon black electrode composites. Journal of Power Sources, 2008, 177, 652-659.	7.8	33
21	Purity Evaluation of Carbon Nanotube Materials by Thermogravimetric, TEM, and SEM Methods. Journal of Nanoscience and Nanotechnology, 2007, 7, 3477-3486.	0.9	72
22	Polymer Blend for Electrolyte and Electrode Coatings. Macromolecular Symposia, 2005, 229, 160-167.	0.7	3