Tapas Samanta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9594583/publications.pdf

Version: 2024-02-01

	687363		839539	
18	815	13	18	
papers	citations	h-index	g-index	
18	18	18	631	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Giant magnetocaloric effect in antiferromagnetic ErRu2Si2 compound. Applied Physics Letters, 2007, 91, .	3.3	181
2	Giant magnetocaloric effects near room temperature in Mn1 â^' xCuxCoGe. Applied Physics Letters, 2012 101, .) - '3.3	118
3	Hydrostatic pressure-induced modifications of structural transitions lead to large enhancements of magnetocaloric effects in MnNiSi-based systems. Physical Review B, 2015, 91, .	3.2	100
4	Magnetostructural phase transitions and magnetocaloric effects in MnNiGe1 \hat{a} 2xAlx. Applied Physics Letters, 2012, 100, .	3.3	84
5	Barocaloric and magnetocaloric effects in (MnNiSi)1â^' <i>x</i> (FeCoGe) <i>x</i> . Applied Physics Letters, 2018, 112, .	3.3	65
6	Magnetocaloric properties of nanocrystalline La0.125Ca0.875MnO3. Applied Physics Letters, 2009, 94, .	3.3	55
7	Effects of hydrostatic pressure on magnetostructural transitions and magnetocaloric properties in (MnNiSi)1â°° <i>x</i> (FeCoGe) <i>x</i>). Journal of Applied Physics, 2015, 117, .	2.5	51
8	Giant reversible barocaloric response of (MnNiSi)1â^' <i>x</i> (FeCoGe) <i>x</i> (<i>x</i>) (<i>x</i>) = 0.39, 0.40,) Tj ETQq0 0	0 rgBT /O	verlock 10 T
9	Magnetic and magnetocaloric properties of Dy ₅ Pd ₂ : role of magnetic irreversibility. RSC Advances, 2015, 5, 47860-47865.	3.6	26
10	Asymmetric switchinglike behavior in the magnetoresistance at low fields in bulk metamagnetic Heusler alloys. Physical Review B, 2014, 90, .	3.2	25
11	Large magnetocaloric effects due to the coincidence of martensitic transformation with magnetic changes below the second-order magnetic phase transition in Mn1a~xFexCoGe. Journal of Magnetism and Magnetic Materials, 2013, 330, 88-90.	2.3	17
12	The effects of substituting Ag for In on the magnetoresistance and magnetocaloric properties of Ni-Mn-In Heusler alloys. AIP Advances, $2016, 6, \ldots$	1.3	17
13	Observation of large magnetocaloric effect in HoRu2Si2. Journal of Applied Physics, 2014, 115, 083914.	2.5	16
14	Phase diagram and magnetocaloric effects in Ni50Mn35(In1â^'xCrx)15 and (Mn1â^'xCrx)NiGe1.05 alloys. Journal of Applied Physics, 2014, 115, 17A922.	2.5	12
15	Asymmetric magnetoresistance in bulk In-based off-stoichiometric Heusler alloys. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 1000-1003.	0.8	9
16	Influence of copper substitution on the magnetic and magnetocaloric properties of NiMnInB alloys. Journal of Applied Physics, 2015, 117, .	2.5	8
17	The influence of hydrostatic pressure on the magnetic and magnetocaloric properties of DyRu2Si2. Journal of Applied Physics, 2017, 121, 045101.	2.5	3
18	Hydrostatic pressure induced giant enhancement of entropy change as driven by structural transition in Mn0.9Fe0.2Ni0.9Ge0.93Si0.07. Journal of Applied Physics, 2021, 129, .	2.5	1