

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9593844/publications.pdf Version: 2024-02-01

MIN XU

#	Article	IF	CITATIONS
1	Detection of heavy metal lead in lettuce leaves based on fluorescence hyperspectral technology combined with deep learning algorithm. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 266, 120460.	2.0	33
2	Developing deep learning based regression approaches for prediction of firmness and pH in Kyoho grape using Vis/NIR hyperspectral imaging. Infrared Physics and Technology, 2022, 120, 104003.	1.3	21
3	Nondestructive detection of total soluble solids in grapes using VMDâ€RC and hyperspectral imaging. Journal of Food Science, 2022, 87, 326-338.	1.5	11
4	Research on nondestructive identification of grape varieties based on EEMDâ€DWT and hyperspectral image. Journal of Food Science, 2021, 86, 2011-2023.	1.5	20
5	Nondestructive detection for Panax notoginseng powder grades based on hyperspectral imaging technology combined with CARSâ€PCA and MPA‣SSVM. Journal of Food Process Engineering, 2021, 44, e13718.	1.5	14
6	A method of information fusion for identification of rice seed varieties based on hyperspectral imaging technology. Journal of Food Process Engineering, 2021, 44, e13797.	1.5	7
7	Nondestructive detection of lead content in oilseed rape leaves based on <scp>MRFâ€HHOâ€SVR</scp> and hyperspectral technology. Journal of Food Process Engineering, 2021, 44, e13793.	1.5	10
8	Visualization of heavy metal cadmium in lettuce leaves based on wavelet support vector machine regression model and visibleâ€near infrared hyperspectral imaging. Journal of Food Process Engineering, 2021, 44, e13897.	1.5	6
9	Development of deep learning method for lead content prediction of lettuce leaf using hyperspectral images. International Journal of Remote Sensing, 2020, 41, 2263-2276.	1.3	32
10	Nondestructive determination of the total mold colony count in green tea by hyperspectral imaging technology. Journal of Food Process Engineering, 2020, 43, e13570.	1.5	16
11	Hyperspectral technique combined with deep learning algorithm for detection of compound heavy metals in lettuce. Food Chemistry, 2020, 321, 126503.	4.2	84
12	Nondestructive detection for egg freshness grade based on hyperspectral imaging technology. Journal of Food Process Engineering, 2020, 43, e13422.	1.5	36
13	Grade Identification of Tieguanyin Tea Using Fluorescence Hyperspectra and Different Statistical Algorithms. Journal of Food Science, 2019, 84, 2234-2241.	1.5	32
14	Detection of viability of soybean seed based on fluorescence hyperspectra and CARSâ€&VMâ€AdaBoost model. Journal of Food Processing and Preservation, 2019, 43, e14238.	0.9	29
15	Visualizing distribution of moisture content in tea leaves using optimization algorithms and NIR hyperspectral imaging. Computers and Electronics in Agriculture, 2019, 160, 153-159.	3.7	81
16	Discrimination of tea varieties using FTIR spectroscopy and allied Gustafson-Kessel clustering. Computers and Electronics in Agriculture, 2018, 147, 64-69.	3.7	30