
Jingjun Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9592438/publications.pdf Version: 2024-02-01

ΙΝΟΠΝ ΧΑΝΟ

#	Article	IF	CITATIONS
1	Bifunctional Phosphorylcholine-Modified Adsorbent with Enhanced Selectivity and Antibacterial Property for Recovering Uranium from Seawater. ACS Applied Materials & Interfaces, 2020, 12, 16959-16968.	8.0	48
2	Polyguanidine-modified adsorbent to enhance marine applicability for uranium recovery from seawater. Journal of Hazardous Materials, 2021, 416, 126192.	12.4	40
3	Boron assisted low temperature immobilization of iodine adsorbed by silver-coated silica gel. Journal of Nuclear Materials, 2019, 526, 151758.	2.7	32
4	The effect of boron on zeolite-4A immobilization of iodine waste forms with a novel preparation method. Journal of Radioanalytical and Nuclear Chemistry, 2020, 324, 579-587.	1.5	30
5	Low-sintering-temperature borosilicate glass to immobilize silver-coated silica-gel with different iodine loadings. Journal of Hazardous Materials, 2021, 403, 123588.	12.4	16
6	Immobilization of iodine waste forms: A low-sintering temperature with Bi2O3-B2O3-ZnO glass. Annals of Nuclear Energy, 2021, 150, 107817.	1.8	16
7	Role of amorphous silica gel in B2O3-Bi2O3-ZnO-SiO2 to immobilize iodine waste. Journal of Nuclear Materials, 2021, 543, 152619.	2.7	13
8	Synthesis of glass composite material with bismuthate glass powder and zeolite-4A for immobilization of iodine waste. Journal of Solid State Chemistry, 2021, 294, 121856.	2.9	11
9	The immobilization on various concentrations of iodine in silver-coated silica gel via B2O3–Bi2O3 based material. Materials Chemistry and Physics, 2021, 259, 124040.	4.0	8
10	Utilization of B ₂ O ₃ –Bi ₂ O ₃ –ZnO low-temperature glass-ceramics to immobilize iodine-loaded silver-coated silica-gel. Journal of Materials Chemistry C, 2021, 9, 10462-10471.	5.5	7
11	Low-temperature fabrication of glass-based iodine waste forms via a novel preparation method. Journal of Solid State Chemistry, 2021, 300, 122186.	2.9	6
12	Application of poly(vinylphosphonic acid) modified poly(amidoxime) in uptake of uranium from seawater. RSC Advances, 2022, 12, 4054-4060.	3.6	5
13	Immobilization of iodine waste in B2O3–Bi2O3–ZnO based materials: maximum solid solubility. Journal of Radioanalytical and Nuclear Chemistry, 2020, 326, 1447-1456.	1.5	3
14	Immobilization of iodine waste at low sintering temperature: Phase evolution and microstructure transformation. Annals of Nuclear Energy, 2022, 173, 109145.	1.8	3
15	Direct immobilization of iodine-loaded silver-coated silica gel with silicate glass powders at low temperature. Journal of Radioanalytical and Nuclear Chemistry, 2021, 329, 401-410.	1.5	2