Alexander M Heidt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9592437/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers. Optics Express, 2011, 19, 3775.	3.4	261
2	Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers. Journal of the Optical Society of America B: Optical Physics, 2010, 27, 550.	2.1	254
3	Limits of coherent supercontinuum generation in normal dispersion fibers. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 764.	2.1	132
4	High quality sub-two cycle pulses from compression of supercontinuum generated in all-normal dispersion photonic crystal fiber. Optics Express, 2011, 19, 13873.	3.4	101
5	Efficient Adaptive Step Size Method for the Simulation of Supercontinuum Generation in Optical Fibers. Journal of Lightwave Technology, 2009, 27, 3984-3991.	4.6	100
6	Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation. Optics Express, 2011, 19, 7742.	3.4	98
7	Supercontinuum generation in non-silica fibers. Optical Fiber Technology, 2012, 18, 327-344.	2.7	89
8	Low-loss and low-bend-sensitivity mid-infrared guidance in a hollow-core–photonic-bandgap fiber. Optics Letters, 2014, 39, 295.	3.3	65
9	Generation of high quality, 13 cycle pulses by active phase control of an octave spanning supercontinuum. Optics Express, 2011, 19, 20151.	3.4	63
10	Dispersion measurement of ultra-high numerical aperture fibers covering thulium, holmium, and erbium emission wavelengths. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 1301.	2.1	60
11	Recent advances in supercontinuum generation in specialty optical fibers [Invited]. Journal of the Optical Society of America B: Optical Physics, 2021, 38, F90.	2.1	59
12	Coherent supercontinuum generation in soft glass photonic crystal fibers. Photonics Research, 2017, 5, 710.	7.0	50
13	High Power Diode-Seeded Fiber Amplifiers at 2 μm—From Architectures to Applications. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 525-536.	2.9	44
14	Pulse-preserving broadband visible supercontinuum generation in all-normal dispersion tapered suspended-core optical fibers. Optics Express, 2011, 19, 12275.	3.4	36
15	Ultra low-noise coherent supercontinuum amplification and compression below 100 fs in an all-fiber polarization-maintaining thulium fiber amplifier. Optics Express, 2019, 27, 35041.	3.4	34
16	Perspective on the next generation of ultra-low noise fiber supercontinuum sources and their emerging applications in spectroscopy, imaging, and ultrafast photonics. Applied Physics Letters, 2021, 118, .	3.3	28
17	Improved retrieval of complex supercontinuum pulses from XFROG traces using a ptychographic algorithm. Optics Letters, 2016, 41, 4903.	3.3	25
18	Low noise all-fiber amplification of a coherent supercontinuum at 2 µm and its limits imposed by polarization noise. Scientific Reports, 2020, 10, 16734.	3.3	19

Alexander M Heidt

#	Article	IF	CITATIONS
19	High stability soliton frequency-shifting mechanisms for laser synchronization applications. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 1257.	2.1	17
20	Temporal fine structure of all-normal dispersion fiber supercontinuum pulses caused by non-ideal pump pulse shapes. Optics Express, 2020, 28, 16579.	3.4	17
21	Low pump power coherent supercontinuum generation in heavy metal oxide solid-core photonic crystal fibers infiltrated with carbon tetrachloride covering 930–2500 nm. Optics Express, 2021, 29, 39586.	3.4	17
22	Nanoscale all-normal dispersion optical fibers for coherent supercontinuum generation at ultraviolet wavelengths. Optics Express, 2012, 20, 13777.	3.4	12
23	Generation of Ultrashort and Coherent Supercontinuum Light Pulses in All-Normal Dispersion Fibers. , 2016, , 247-280.		11
24	Implementation of temporal ptychography algorithm, i ² PIE, for improved single-beam coherent anti-Stokes Raman scattering measurements. Journal of the Optical Society of America B: Optical Physics, 2020, 37, A259.	2.1	11
25	Generalized spectral phase-only time-domain ptychographic phase reconstruction applied in nonlinear microscopy. Journal of the Optical Society of America B: Optical Physics, 2020, 37, A285.	2.1	9
26	Noise amplification in all-normal dispersion fiber supercontinuum generation and its impact on ultrafast photonics applications. OSA Continuum, 2020, 3, 2347.	1.8	9
27	Reducing the noise of fiber supercontinuum sources to its limits by exploiting cascaded soliton and wave breaking nonlinear dynamics. Optica, 2022, 9, 352.	9.3	6
28	Ultrashort pulse formation from a thulium-doped fiber laser: Self-characterization and mapping. Optics Communications, 2021, 486, 126747.	2.1	5
29	Deep ultraviolet supercontinuum generation in optical nanofibers by femtosecond pulses at 400-nm wavelength. , 2010, , .		4
30	Femtosecond seeding of a Tm-Ho fiber amplifier by a broadband coherent supercontinuum pulse from an all-solid all-normal photonic crystal fiber. , 2017, , .		4
31	Infrared, visible, and ultraviolet broadband coherent supercontinuum generation in all-normal dispersion fibers. Proceedings of SPIE, 2010, , .	0.8	3
32	Non-invasive Excitation of Meter-scale Electric Discharges in Gas-filled Hollow-core Photonic Crystal Fibers. , 2018, , .		2
33	Noise Fingerprints of Fiber Supercontinuum Sources. , 2021, , .		2
34	High sensitivity gas detection using Hollow Core Photonic Bandgap Fibres designed for mid-IR operation. , 2014, , .		1
35	High-quality 3.6-fs pulses by compression of an octave-spanning supercontinuum. Proceedings of SPIE, 2012, , .	0.8	0
36	96 fs All-Fiber Polarization Maintaining Thulium Doped Amplifier Seeded by Coherent Supercontinuum. , 2019, , .		0

#	Article	IF	CITATIONS
37	Temporal fine structure of all-normal dispersion fiber supercontinuum. , 2021, , .		Ο
38	Targeted single-beam CARS using phase-and-polarization shaping. , 2021, , .		0
39	Mid-IR coherent supercontinuum generation in all-solid step-index soft glass fibers. , 2012, , .		0
40	Low-noise supercontinuum sources based on all-normal dispersion fibers: exploring their prospects and limitations. , 2018, , .		0
41	Polarization-dependent relative intensity noise of fiber supercontinuum sources. EPJ Web of Conferences, 2020, 243, 17004.	0.3	0
42	Specialty Optical Fibers for Coherent and Low-Noise Supercontinuum Generation and their Application in Ultrafast Photonics. , 2020, , .		0