Wei Huang

List of Publications by Citations

Source: https://exaly.com/author-pdf/959173/wei-huang-publications-by-citations.pdf

Version: 2024-04-18

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

2,496 papers

114,876 citations

148 h-index

243 g-index

2,572 ext. papers

136,820 ext. citations

8.2 avg, IF

8.86 L-index

#	Paper	IF	Citations
2496	3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. <i>ACS Nano</i> , 2012 , 6, 3206-13	16.7	1371
2495	Heteroatom-doped graphene materials: syntheses, properties and applications. <i>Chemical Society Reviews</i> , 2014 , 43, 7067-98	58.5	1258
2494	Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. <i>Chemical Society Reviews</i> , 2013 , 42, 173-201	58.5	1257
2493	Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics. <i>Advanced Materials</i> , 2014 , 26, 7931-58	24	1230
2492	Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. <i>Nature Photonics</i> , 2016 , 10, 699-704	33.9	1206
2491	Latest advances in supercapacitors: from new electrode materials to novel device designs. <i>Chemical Society Reviews</i> , 2017 , 46, 6816-6854	58.5	1120
2490	Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. <i>Nature</i> , 2018 , 562, 249-253	50.4	1116
2489	Stabilizing triplet excited states for ultralong organic phosphorescence. <i>Nature Materials</i> , 2015 , 14, 685	5- 29	979
2488	Recent progress in metal-organic complexes for optoelectronic applications. <i>Chemical Society Reviews</i> , 2014 , 43, 3259-302	58.5	823
2487	All-inorganic perovskite nanocrystal scintillators. <i>Nature</i> , 2018 , 561, 88-93	50.4	773
2486	Temporal full-colour tuning through non-steady-state upconversion. <i>Nature Nanotechnology</i> , 2015 , 10, 237-42	28.7	670
2485	Rational molecular passivation for high-performance perovskite light-emitting diodes. <i>Nature Photonics</i> , 2019 , 13, 418-424	33.9	638
2484	Smart responsive phosphorescent materials for data recording and security protection. <i>Nature Communications</i> , 2014 , 5, 3601	17.4	566
2483	Interfacial control toward efficient and low-voltage perovskite light-emitting diodes. <i>Advanced Materials</i> , 2015 , 27, 2311-6	24	559
2482	Combination of small molecule prodrug and nanodrug delivery: amphiphilic drug-drug conjugate for cancer therapy. <i>Journal of the American Chemical Society</i> , 2014 , 136, 11748-56	16.4	535
2481	Nitrogen and sulfur codoped graphene: multifunctional electrode materials for high-performance li-ion batteries and oxygen reduction reaction. <i>Advanced Materials</i> , 2014 , 26, 6186-92	24	532
2480	Centimeter-long and large-scale micropatterns of reduced graphene oxide films: fabrication and sensing applications. <i>ACS Nano</i> , 2010 , 4, 3201-8	16.7	529

2479	High phase-purity 1T'-MoS- and 1T'-MoSe-layered crystals. <i>Nature Chemistry</i> , 2018 , 10, 638-643	17.6	510	
2478	Lanthanide-Activated Phosphors Based on 4f-5d Optical Transitions: Theoretical and Experimental Aspects. <i>Chemical Reviews</i> , 2017 , 117, 4488-4527	68.1	494	
2477	Black phosphorus quantum dots. Angewandte Chemie - International Edition, 2015, 54, 3653-7	16.4	491	
2476	Flexible supercapacitors based on paper substrates: a new paradigm for low-cost energy storage. <i>Chemical Society Reviews</i> , 2015 , 44, 5181-99	58.5	455	
2475	Self-assembly of hyperbranched polymers and its biomedical applications. <i>Advanced Materials</i> , 2010 , 22, 4567-90	24	451	
2474	Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. <i>Advanced Materials</i> , 2010 , 22, 1649-53	24	450	
2473	Lead-Free Organic-Inorganic Hybrid Perovskites for Photovoltaic Applications: Recent Advances and Perspectives. <i>Advanced Materials</i> , 2017 , 29, 1605005	24	437	
2472	Stretchable TiCT MXene/Carbon Nanotube Composite Based Strain Sensor with Ultrahigh Sensitivity and Tunable Sensing Range. <i>ACS Nano</i> , 2018 , 12, 56-62	16.7	437	
2471	Superhydrophobic and superoleophilic hybrid foam of graphene and carbon nanotube for selective removal of oils or organic solvents from the surface of water. <i>Chemical Communications</i> , 2012 , 48, 10660	o ⁵ 2 ⁸	436	
2470	One-Step Electrochemical Synthesis of Graphene/Polyaniline Composite Film and Its Applications. <i>Advanced Functional Materials</i> , 2011 , 21, 2989-2996	15.6	434	
2469	Long-Lived Emissive Probes for Time-Resolved Photoluminescence Bioimaging and Biosensing. <i>Chemical Reviews</i> , 2018 , 118, 1770-1839	68.1	428	
2468	Excited State Modulation for Organic Afterglow: Materials and Applications. <i>Advanced Materials</i> , 2016 , 28, 9920-9940	24	428	
2467	Binary metal oxide: advanced energy storage materials in supercapacitors. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 43-59	13	397	
2466	Spiro-Functionalized Polyfluorene Derivatives as Blue Light-Emitting Materials. <i>Advanced Materials</i> , 2000 , 12, 828-831	24	389	
2465	Interdiffusion Reaction-Assisted Hybridization of Two-Dimensional Metal-Organic Frameworks and TiCT Nanosheets for Electrocatalytic Oxygen Evolution. <i>ACS Nano</i> , 2017 , 11, 5800-5807	16.7	388	
2464	Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition. <i>Applied Physics Letters</i> , 2006 , 89, 123902	3.4	379	
2463	Stability of Perovskite Solar Cells: A Prospective on the Substitution of the A Cation and X Anion. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 1190-1212	16.4	376	
2462	Hybrid 2D Dual-Metal D rganic Frameworks for Enhanced Water Oxidation Catalysis. <i>Advanced Functional Materials</i> , 2018 , 28, 1801554	15.6	367	

2461	Polymer-based resistive memory materials and devices. <i>Advanced Materials</i> , 2014 , 26, 570-606	24	367
2460	Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. <i>Nature Communications</i> , 2017 , 8, 14558	17.4	356
2459	Recent Advances on Graphene Quantum Dots: From Chemistry and Physics to Applications. <i>Advanced Materials</i> , 2019 , 31, e1808283	24	343
2458	Printable Transparent Conductive Films for Flexible Electronics. <i>Advanced Materials</i> , 2018 , 30, 1704738	24	338
2457	Preparation of MoSEpolyvinylpyrrolidone nanocomposites for flexible nonvolatile rewritable memory devices with reduced graphene oxide electrodes. <i>Small</i> , 2012 , 8, 3517-22	11	337
2456	Stretchable Thin-Film Electrodes for Flexible Electronics with High Deformability and Stretchability. <i>Advanced Materials</i> , 2015 , 27, 3349-76	24	333
2455	A Mitochondria-Targeted Photosensitizer Showing Improved Photodynamic Therapy Effects Under Hypoxia. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 9947-51	16.4	330
2454	Surface Modified TiC MXene Nanosheets for Tumor Targeting Photothermal/Photodynamic/Chemo Synergistic Therapy. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 40077-40086	9.5	329
2453	Colour-tunable ultra-long organic phosphorescence of a single-component molecular crystal. <i>Nature Photonics</i> , 2019 , 13, 406-411	33.9	324
2452	Recent progress in the ZnO nanostructure-based sensors. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2011 , 176, 1409-1421	3.1	319
2451	An Aqueous Rechargeable Zn//Co3 O4 Battery with High Energy Density and Good Cycling Behavior. <i>Advanced Materials</i> , 2016 , 28, 4904-11	24	305
2450	Amphiphilic graphene composites. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 9426-9	16.4	301
2449	A flexible Eu(III)-based metal-organic framework: turn-off luminescent sensor for the detection of Fe(III) and picric acid. <i>Dalton Transactions</i> , 2013 , 42, 12403-9	4.3	291
2448	Highly conductive three-dimensional MnO2-carbon nanotube-graphene-Ni hybrid foam as a binder-free supercapacitor electrode. <i>Nanoscale</i> , 2014 , 6, 1079-85	7.7	290
2447	Lanthanide-doped Na(x)ScF(3+x) nanocrystals: crystal structure evolution and multicolor tuning. <i>Journal of the American Chemical Society</i> , 2012 , 134, 8340-3	16.4	286
2446	Stretchable, Transparent, and Self-Patterned Hydrogel-Based Pressure Sensor for Human Motions Detection. <i>Advanced Functional Materials</i> , 2018 , 28, 1802576	15.6	282
2445	Diketopyrrolopyrrole-Triphenylamine Organic Nanoparticles as Multifunctional Reagents for Photoacoustic Imaging-Guided Photodynamic/Photothermal Synergistic Tumor Therapy. <i>ACS Nano</i> , 2017 , 11, 1054-1063	16.7	280
2444	Transferring biomarker into molecular probe: melanin nanoparticle as a naturally active platform for multimodality imaging. <i>Journal of the American Chemical Society</i> , 2014 , 136, 15185-94	16.4	272

(2017-2015)

2443	Non-volatile resistive memory devices based on solution-processed ultrathin two-dimensional nanomaterials. <i>Chemical Society Reviews</i> , 2015 , 44, 2615-28	58.5	269	
2442	3D graphene foam as a monolithic and macroporous carbon electrode for electrochemical sensing. <i>ACS Applied Materials & amp; Interfaces</i> , 2012 , 4, 3129-33	9.5	264	
2441	Recent Progress on Circularly Polarized Luminescent Materials for Organic Optoelectronic Devices. <i>Advanced Optical Materials</i> , 2018 , 6, 1800538	8.1	263	
2440	General synthesis of noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS2 nanosheets and the enhanced catalytic activity of Pd-MoS2 for methanol oxidation. <i>Nanoscale</i> , 2014 , 6, 5762-9	7.7	263	
2439	One-pot synthesis of heterogeneous Co3O4-nanocube/Co(OH)2-nanosheet hybrids for high-performance flexible asymmetric all-solid-state supercapacitors. <i>Nano Energy</i> , 2017 , 35, 138-145	17.1	262	
2438	Simultaneously Enhancing Efficiency and Lifetime of Ultralong Organic Phosphorescence Materials by Molecular Self-Assembly. <i>Journal of the American Chemical Society</i> , 2018 , 140, 10734-10739	16.4	261	
2437	Conjugated-polyelectrolyte-functionalized reduced graphene oxide with excellent solubility and stability in polar solvents. <i>Small</i> , 2010 , 6, 663-9	11	2 60	
2436	Ultralong Phosphorescence of Water-Soluble Organic Nanoparticles for In Vivo Afterglow Imaging. <i>Advanced Materials</i> , 2017 , 29, 1606665	24	259	
2435	Blue-Light-Emitting Fluorene-Based Polymers with Tunable Electronic Properties. <i>Chemistry of Materials</i> , 2001 , 13, 1984-1991	9.6	254	
2434	Spectral and Thermal Spectral Stability Study for Fluorene-Based Conjugated Polymers. <i>Macromolecules</i> , 2002 , 35, 6907-6914	5.5	254	
2433	Hybrid structure of zinc oxide nanorods and three dimensional graphene foam for supercapacitor and electrochemical sensor applications. <i>RSC Advances</i> , 2012 , 2, 4364	3.7	253	
2432	Tunable Synthesis of Bismuth Ferrites with Various Morphologies. <i>Advanced Materials</i> , 2006 , 18, 2145-2	2 124/8	253	
2431	Efficient and stable Ruddlesden P opper perovskite solar cell with tailored interlayer molecular interaction. <i>Nature Photonics</i> , 2020 , 14, 154-163	33.9	251	
2430	Recent developments in top-emitting organic light-emitting diodes. <i>Advanced Materials</i> , 2010 , 22, 5227	'- <u>39</u>	250	
2429	Additive engineering for highly efficient organicIhorganic halide perovskite solar cells: recent advances and perspectives. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 12602-12652	13	249	
2428	An Exonuclease III-Powered, On-Particle Stochastic DNA Walker. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 1855-1858	16.4	248	
2427	Minimising efficiency roll-off in high-brightness perovskite light-emitting diodes. <i>Nature Communications</i> , 2018 , 9, 608	17.4	248	
2426	Visible-Light-Excited Ultralong Organic Phosphorescence by Manipulating Intermolecular Interactions. <i>Advanced Materials</i> , 2017 , 29, 1701244	24	248	

2425	Strain-induced directIndirect bandgap transition and phonon modulation in monolayer WS2. <i>Nano Research</i> , 2015 , 8, 2562-2572	10	245
2424	Polyfluorene-based semiconductors combined with various periodic table elements for organic electronics. <i>Progress in Polymer Science</i> , 2012 , 37, 1192-1264	29.6	244
2423	Microwave Synthesis of Water-Dispersed CdTe/CdS/ZnS Core-Shell-Shell Quantum Dots with Excellent Photostability and Biocompatibility. <i>Advanced Materials</i> , 2008 , 20, 3416-3421	24	239
2422	Muscle-Inspired Self-Healing Hydrogels for Strain and Temperature Sensor. <i>ACS Nano</i> , 2020 , 14, 218-228	8 16.7	237
2421	Synthesis and Luminescence Properties of Novel Eu-Containing Copolymers Consisting of Eu(III)Acrylate即iketonate Complex Monomers and Methyl Methacrylate. <i>Chemistry of Materials</i> , 2000 , 12, 2212-2218	9.6	233
2420	Efficient and Long-Lived Room-Temperature Organic Phosphorescence: Theoretical Descriptors for Molecular Designs. <i>Journal of the American Chemical Society</i> , 2019 , 141, 1010-1015	16.4	228
2419	Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry. <i>Nature Nanotechnology</i> , 2016 , 11, 851-856	28.7	227
2418	Encapsulation of sulfur with thin-layered nickel-based hydroxides for long-cyclic lithium-sulfur cells. <i>Nature Communications</i> , 2015 , 6, 8622	17.4	225
2417	Recent developments in lanthanide-based luminescent probes. <i>Coordination Chemistry Reviews</i> , 2014 , 273-274, 201-212	23.2	224
2416	Controllable Design of MoS Nanosheets Anchored on Nitrogen-Doped Graphene: Toward Fast Sodium Storage by Tunable Pseudocapacitance. <i>Advanced Materials</i> , 2018 , 30, e1800658	24	224
2415	Printed supercapacitors: materials, printing and applications. <i>Chemical Society Reviews</i> , 2019 , 48, 3229-3	3364	222
2414	Hybrid NiCo2S4@MnO2 heterostructures for high-performance supercapacitor electrodes. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 1258-1264	13	222
2413	Enhanced valley splitting in monolayer WSe due to magnetic exchange field. <i>Nature Nanotechnology</i> , 2017 , 12, 757-762	28.7	220
2412	Porous hollow CoDIwith rhombic dodecahedral structures for high-performance supercapacitors. <i>Nanoscale</i> , 2014 , 6, 14354-9	7.7	215
2411	Self-Assembly of Reduced Graphene Oxide into Three-Dimensional Architecture by Divalent Ion Linkage. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 22462-22465	3.8	206
2410	A microporous luminescent europium metal-organic framework for nitro explosive sensing. <i>Dalton Transactions</i> , 2013 , 42, 5718-23	4.3	204
2409	Stabilizing black-phase formamidinium perovskite formation at room temperature and high humidity. <i>Science</i> , 2021 , 371, 1359-1364	33.3	202
2408	Shape-controlled synthesis of NiCo2S4 and their charge storage characteristics in supercapacitors. Nanoscale, 2014, 6, 9824-30	7.7	201

2407	Recent Advances in Polymer-Based Metal-Free Room-Temperature Phosphorescent Materials. <i>Advanced Functional Materials</i> , 2018 , 28, 1802657	15.6	199
2406	Perylene-diimide-based nanoparticles as highly efficient photoacoustic agents for deep brain tumor imaging in living mice. <i>Advanced Materials</i> , 2015 , 27, 843-7	24	197
2405	An effective Friedel-Crafts postfunctionization of poly(N-vinylcarbazole) to tune carrier transportation of supramolecular organic semiconductors based on pi-stacked polymers for nonvolatile flash memory cell. <i>Journal of the American Chemical Society</i> , 2008 , 130, 2120-1	16.4	197
2404	Bulk heterojunction polymer memory devices with reduced graphene oxide as electrodes. <i>ACS Nano</i> , 2010 , 4, 3987-92	16.7	195
2403	Oriented Quasi-2D Perovskites for High Performance Optoelectronic Devices. <i>Advanced Materials</i> , 2018 , 30, e1804771	24	195
2402	Molecular imaging of biological systems with a clickable dye in the broad 800- to 1,700-nm near-infrared window. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 962-967	11.5	192
2401	A Simple Approach to Boost Capacitance: Flexible Supercapacitors Based on Manganese Oxides@MOFs via Chemically Induced In Situ Self-Transformation. <i>Advanced Materials</i> , 2016 , 28, 5242-8	s ² 4	190
2400	Stable field emission from hydrothermally grown ZnO nanotubes. <i>Applied Physics Letters</i> , 2006 , 88, 213	19.2	188
2399	Fabrication of flexible, all-reduced graphene oxide non-volatile memory devices. <i>Advanced Materials</i> , 2013 , 25, 233-8	24	186
2398	All-carbon electronic devices fabricated by directly grown single-walled carbon nanotubes on reduced graphene oxide electrodes. <i>Advanced Materials</i> , 2010 , 22, 3058-61	24	186
2397	Facile Synthesis of Highly Efficient Lepidine-Based Phosphorescent Iridium(III) Complexes for Yellow and White Organic Light-Emitting Diodes. <i>Advanced Functional Materials</i> , 2016 , 26, 881-894	15.6	186
2396	Metal B rganic framework derived CoSe2 nanoparticles anchored on carbon fibers as bifunctional electrocatalysts for efficient overall water splitting. <i>Nano Research</i> , 2016 , 9, 2234-2243	10	185
2395	Mesoporous metal-organic frameworks with size-, shape-, and space-distribution-controlled pore structure. <i>Advanced Materials</i> , 2015 , 27, 2923-9	24	184
2394	All-in-One Phototheranostics: Single Laser Triggers NIR-II Fluorescence/Photoacoustic Imaging Guided Photothermal/Photodynamic/Chemo Combination Therapy. <i>Advanced Functional Materials</i> , 2019 , 29, 1901480	15.6	183
2393	Synthesis of graphenedarbon nanotube hybrid foam and its use as a novel three-dimensional electrode for electrochemical sensing. <i>Journal of Materials Chemistry</i> , 2012 , 22, 17044		181
2392	A Family of Electroluminescent Silyl-Substituted Poly(p-phenylenevinylene)s: Synthesis, Characterization, and StructureProperty Relationships. <i>Macromolecules</i> , 2000 , 33, 9015-9025	5.5	181
2391	Fluorescent/phosphorescent dual-emissive conjugated polymer dots for hypoxia bioimaging. <i>Chemical Science</i> , 2015 , 6, 1825-1831	9.4	180
2390	Enhancing Ultralong Organic Phosphorescence by Effective Type Halogen Bonding. <i>Advanced Functional Materials</i> , 2018 , 28, 1705045	15.6	180

2389	A Significantly Twisted Spirocyclic Phosphine Oxide as a Universal Host for High-Efficiency Full-Color Thermally Activated Delayed Fluorescence Diodes. <i>Advanced Materials</i> , 2016 , 28, 3122-30	24	178
2388	Peripheral Amplification of Multi-Resonance Induced Thermally Activated Delayed Fluorescence for Highly Efficient OLEDs. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 11316-11320	16.4	178
2387	Probing charged impurities in suspended graphene using Raman spectroscopy. ACS Nano, 2009, 3, 569-7	71 6.7	177
2386	Long Electron-Hole Diffusion Length in High-Quality Lead-Free Double Perovskite Films. <i>Advanced Materials</i> , 2018 , 30, e1706246	24	175
2385	Microwave-Assisted Synthesis of Water-Dispersed CdTe Nanocrystals with High Luminescent Efficiency and Narrow Size Distribution. <i>Chemistry of Materials</i> , 2007 , 19, 359-365	9.6	173
2384	Design and Synthesis of Bipyridyl-Containing Conjugated Polymers: Effects of Polymer Rigidity on Metal Ion Sensing. <i>Macromolecules</i> , 2001 , 34, 7932-7940	5.5	173
2383	Microwave-Assisted Preparation of White Fluorescent Graphene Quantum Dots as a Novel Phosphor for Enhanced White-Light-Emitting Diodes. <i>Advanced Functional Materials</i> , 2016 , 26, 2739-274	14 ^{5.6}	172
2382	Ultrasmall Phosphorescent Polymer Dots for Ratiometric Oxygen Sensing and Photodynamic Cancer Therapy. <i>Advanced Functional Materials</i> , 2014 , 24, 4823-4830	15.6	171
2381	Synthesis, Characterization, and Structure Property Relationship of Novel Fluorene Thiophene-Based Conjugated Copolymers. <i>Macromolecules</i> , 2000 , 33, 8945-8952	5.5	171
2380	A flexible pressure sensor based on rGO/polyaniline wrapped sponge with tunable sensitivity for human motion detection. <i>Nanoscale</i> , 2018 , 10, 10033-10040	7.7	170
2379	Variable photophysical properties of phosphorescent iridium(III) complexes triggered by closo- and nido-carborane substitution. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 13434-8	16.4	170
2378	Microwave-assisted growth and characterization of water-dispersed CdTe/CdS core-shell nanocrystals with high photoluminescence. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 13370-4	3.4	170
2377	Degradable Semiconducting Oligomer Amphiphile for Ratiometric Photoacoustic Imaging of Hypochlorite. <i>ACS Nano</i> , 2017 , 11, 4174-4182	16.7	168
2376	Growth mechanism of tubular ZnO formed in aqueous solution. <i>Nanotechnology</i> , 2006 , 17, 1740-4	3.4	166
2375	Design of Amorphous Manganese Oxide@Multiwalled Carbon Nanotube Fiber for Robust Solid-State Supercapacitor. <i>ACS Nano</i> , 2017 , 11, 444-452	16.7	163
2374	Enhanced thermopower of graphene films with oxygen plasma treatment. ACS Nano, 2011 , 5, 2749-55	16.7	162
2373	One-step growth of graphenellarbon nanotube hybrid materials by chemical vapor deposition. <i>Carbon</i> , 2011 , 49, 2944-2949	10.4	162
2372	Single polymer-based ternary electronic memory material and device. <i>Advanced Materials</i> , 2012 , 24, 290)1 <u>.</u> 5	161

(2011-2008)

2371	Kinked Star-Shaped Fluorene/ Triazatruxene Co-oligomer Hybrids with Enhanced Functional Properties for High-Performance, Solution-Processed, Blue Organic Light-Emitting Diodes. <i>Advanced Functional Materials</i> , 2008 , 18, 265-276	15.6	161
2370	A Novel Series of Efficient Thiophene-Based Light-Emitting Conjugated Polymers and Application in Polymer Light-Emitting Diodes. <i>Macromolecules</i> , 2000 , 33, 2462-2471	5.5	161
2369	Room-Temperature Molten Salt for Facile Fabrication of Efficient and Stable Perovskite Solar Cells in Ambient Air. <i>CheM</i> , 2019 , 5, 995-1006	16.2	160
2368	Organic Dye Based Nanoparticles for Cancer Phototheranostics. <i>Small</i> , 2018 , 14, e1704247	11	160
2367	Three-Dimensional Nitrogen-Doped Carbon Nanotubes/Graphene Structure Used as a Metal-Free Electrocatalyst for the Oxygen Reduction Reaction. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 24592-24	139 ⁸ 7	160
2366	Cationic Polyfluorenes with Phosphorescent Iridium(III) Complexes for Time-Resolved Luminescent Biosensing and Fluorescence Lifetime Imaging. <i>Advanced Functional Materials</i> , 2013 , 23, 3268-3276	15.6	159
2365	High-performance free-standing PEDOT:PSS electrodes for flexible and transparent all-solid-state supercapacitors. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 10493-10499	13	158
2364	Dynamic Ultralong Organic Phosphorescence by Photoactivation. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 8425-8431	16.4	158
2363	A facile and universal top-down method for preparation of monodisperse transition-metal dichalcogenide nanodots. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 5425-8	16.4	156
2362	MOF-directed templating synthesis of a porous multicomponent dodecahedron with hollow interiors for enhanced lithium-ion battery anodes. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 8483-8488	13	155
2361	A Quasi-Solid-State Sodium-Ion Capacitor with High Energy Density. <i>Advanced Materials</i> , 2015 , 27, 6962-	- 8 4	155
2360	Ultra-large single-layer graphene obtained from solution chemical reduction and its electrical properties. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 2164-9	3.6	155
2359	Two-dimensional Ruddlesden P opper layered perovskite solar cells based on phase-pure thin films. <i>Nature Energy</i> , 2021 , 6, 38-45	62.3	155
2358	Photoluminescent Poly(p-phenylenevinylene)s with an Aromatic Oxadiazole Moiety as the Side Chain: Synthesis, Electrochemistry, and Spectroscopy Study. <i>Macromolecules</i> , 1999 , 32, 4351-4358	5.5	154
2357	Lamellar K2Co3(P2O7)2[2H2O nanocrystal whiskers: High-performance flexible all-solid-state asymmetric micro-supercapacitors via inkjet printing. <i>Nano Energy</i> , 2015 , 15, 303-312	17.1	153
2356	Black Phosphorus Nanosheets Immobilizing Ce6 for Imaging-Guided Photothermal/Photodynamic Cancer Therapy. <i>ACS Applied Materials & Discrete States and Photothermal Cancer Therapy. ACS Applied Materials & Discrete States and Discrete States are also as a contract of the Canada Canad</i>	9.5	153
2355	Mo C-Derived Polyoxometalate for NIR-II Photoacoustic Imaging-Guided Chemodynamic/Photothermal Synergistic Therapy. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 18641-18646	16.4	153
2354	Tricyanometalate molecular chemistry: A type of versatile building blocks for the construction of cyano-bridged molecular architectures. <i>Coordination Chemistry Reviews</i> , 2011 , 255, 1713-1732	23.2	153

2353	Palladium Nanoparticles Supported on Nitrogen and Sulfur Dual-Doped Graphene as Highly Active Electrocatalysts for Formic Acid and Methanol Oxidation. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 10858-65	9.5	153
2352	Achieving efficient photodynamic therapy under both normoxia and hypoxia using cyclometalated Ru(ii) photosensitizer through type I photochemical process. <i>Chemical Science</i> , 2018 , 9, 502-512	9.4	152
2351	Free-standing electrochemical electrode based on Ni(OH)2/3D graphene foam for nonenzymatic glucose detection. <i>Nanoscale</i> , 2014 , 6, 7424-9	7.7	152
2350	Selective synthesis of hierarchical mesoporous spinel NiCoDFor high-performance supercapacitors. <i>Nanoscale</i> , 2014 , 6, 4303-8	7.7	152
2349	Recent progress on organic donor\(\text{donor}\) cceptor complexes as active elements in organic field-effect transistors. \(Journal of Materials Chemistry C, \) 2018, 6, 3485-3498	7.1	150
2348	Extraordinarily Stretchable All-Carbon Collaborative Nanoarchitectures for Epidermal Sensors. <i>Advanced Materials</i> , 2017 , 29, 1606411	24	148
2347	Monodisperse Six-Armed Triazatruxenes: Microwave-Enhanced Synthesis and Highly Efficient Pure-Deep-Blue Electroluminescence. <i>Macromolecules</i> , 2006 , 39, 3707-3709	5.5	148
2346	Improving the Stability of Metal Halide Perovskite Quantum Dots by Encapsulation. <i>Advanced Materials</i> , 2019 , 31, e1900682	24	146
2345	Structure and catalytic properties of vanadium oxide supported on mesocellulous silica foams (MCF) for the oxidative dehydrogenation of propane to propylene. <i>Journal of Catalysis</i> , 2006 , 239, 125-	13g	146
2344	pH-Triggered and Enhanced Simultaneous Photodynamic and Photothermal Therapy Guided by Photoacoustic and Photothermal Imaging. <i>Chemistry of Materials</i> , 2017 , 29, 5216-5224	9.6	145
2343	Multicolour synthesis in lanthanide-doped nanocrystals through cation exchange in water. <i>Nature Communications</i> , 2016 , 7, 13059	17.4	144
2342	DNA Hydrogel with Aptamer-Toehold-Based Recognition, Cloaking, and Decloaking of Circulating Tumor Cells for Live Cell Analysis. <i>Nano Letters</i> , 2017 , 17, 5193-5198	11.5	144
2341	Visible-Light Excited Luminescent Thermometer Based on Single Lanthanide Organic Frameworks. <i>Advanced Functional Materials</i> , 2016 , 26, 8677-8684	15.6	143
2340	All Paper-Based Flexible and Wearable Piezoresistive Pressure Sensor. <i>ACS Applied Materials & Interfaces</i> , 2019 , 11, 25034-25042	9.5	141
2339	Efficient and reproducible CH3NH3PbI(3-x)(SCN)x perovskite based planar solar cells. <i>Chemical Communications</i> , 2015 , 51, 11997-9	5.8	141
2338	Coating two-dimensional nanomaterials with metal-organic frameworks. ACS Nano, 2014 , 8, 8695-701	16.7	141
2337	Enhanced Solid-State Luminescence and Low-Threshold Lasing from Starburst Macromolecular Materials. <i>Advanced Materials</i> , 2009 , 21, 355-360	24	141
2336	Red-Carbon-Quantum-Dot-Doped SnO Composite with Enhanced Electron Mobility for Efficient and Stable Perovskite Solar Cells. <i>Advanced Materials</i> , 2020 , 32, e1906374	24	141

2335	Dopant-Free Hole Transporting Polymers for High Efficiency, Environmentally Stable Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2016 , 6, 1600502	21.8	141
2334	Stretchable Organic Semiconductor Devices. <i>Advanced Materials</i> , 2016 , 28, 9243-9265	24	139
2333	Lanthanide metalorganic frameworks assembled from a fluorene-based ligand: selective sensing of Pb2+ and Fe3+ ions. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 1900-1905	7.1	139
2332	Electrically Tunable Valley-Light Emitting Diode (vLED) Based on CVD-Grown Monolayer WS2. <i>Nano Letters</i> , 2016 , 16, 1560-7	11.5	139
2331	FeCl3-Based Few-Layer Graphene Intercalation Compounds: Single Linear Dispersion Electronic Band Structure and Strong Charge Transfer Doping. <i>Advanced Functional Materials</i> , 2010 , 20, 3504-3509	15.6	138
2330	Ultrathin two-dimensional metal-organic framework nanosheets for functional electronic devices. <i>Coordination Chemistry Reviews</i> , 2018 , 377, 44-63	23.2	138
2329	Fluorene-substituted pyrenesNovel pyrene derivatives as emitters in nondoped blue OLEDs. <i>Organic Electronics</i> , 2006 , 7, 155-162	3.5	137
2328	Recent Progress of Janus 2D Transition Metal Chalcogenides: From Theory to Experiments. <i>Small</i> , 2018 , 14, e1802091	11	136
2327	Growth of large-sized graphene thin-films by liquid precursor-based chemical vapor deposition under atmospheric pressure. <i>Carbon</i> , 2011 , 49, 3672-3678	10.4	135
2326	Large Nonlinear Absorption in Coated Ag2S/CdS Nanoparticles by Inverse Microemulsion. <i>Journal of Physical Chemistry B</i> , 1998 , 102, 1884-1887	3.4	134
2325	The synthesis of shape-controlled MnO2/graphene composites via a facile one-step hydrothermal method and their application in supercapacitors. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 12818	13	133
2324	Activatable Semiconducting Theranostics: Simultaneous Generation and Ratiometric Photoacoustic Imaging of Reactive Oxygen Species In Vivo. <i>Advanced Materials</i> , 2018 , 30, e1707509	24	133
2323	Multiphosphine-Oxide Hosts for Ultralow-Voltage-Driven True-Blue Thermally Activated Delayed Fluorescence Diodes with External Quantum Efficiency beyond 20. <i>Advanced Materials</i> , 2016 , 28, 479-85	;24	132
2322	Hydrogen-Bonded Organic Aromatic Frameworks for Ultralong Phosphorescence by Intralayer ⊞ Interactions. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 4005-4009	16.4	131
2321	Phosphorescent Polymeric Thermometers for In Vitro and In Vivo Temperature Sensing with Minimized Background Interference. <i>Advanced Functional Materials</i> , 2016 , 26, 4386-4396	15.6	131
2320	Engineering Melanin Nanoparticles as an Efficient Drug-Delivery System for Imaging-Guided Chemotherapy. <i>Advanced Materials</i> , 2015 , 27, 5063-9	24	131
2319	Advancements in the stability of perovskite solar cells: degradation mechanisms and improvement approaches. <i>RSC Advances</i> , 2016 , 6, 38079-38091	3.7	131
2318	Two-dimensional transition metal dichalcogenide nanomaterials for biosensing applications. Materials Chemistry Frontiers, 2017 , 1, 24-36	7.8	130

2317	Inkjet-printed flexible, transparent and aesthetic energy storage devices based on PEDOT:PSS/Ag grid electrodes. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 13754-13763	13	130
2316	Ultralong Phosphorescence from Organic Ionic Crystals under Ambient Conditions. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 678-682	16.4	130
2315	Efficient Red Perovskite Light-Emitting Diodes Based on Solution-Processed Multiple Quantum Wells. <i>Advanced Materials</i> , 2017 , 29, 1606600	24	129
2314	Inherently Eu /Eu Codoped Sc O Nanoparticles as High-Performance Nanothermometers. <i>Advanced Materials</i> , 2018 , 30, e1705256	24	129
2313	Multivalent capture and detection of cancer cells with DNA nanostructured biosensors and multibranched hybridization chain reaction amplification. <i>Analytical Chemistry</i> , 2014 , 86, 7843-8	7.8	128
2312	Solution-processed nitrogen-rich graphene-like holey conjugated polymer for efficient lithium ion storage. <i>Nano Energy</i> , 2017 , 41, 117-127	17.1	128
2311	Application of chelate phosphine oxide ligand in EuIII complex with mezzo triplet energy level, highly efficient photoluminescent, and electroluminescent performances. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 3023-9	3.4	127
2310	Solvent Engineering Improves Efficiency of Lead-Free Tin-Based Hybrid Perovskite Solar Cells beyond 9%. <i>ACS Energy Letters</i> , 2018 , 3, 2701-2707	20.1	126
2309	Rejuvenated Photodynamic Therapy for Bacterial Infections. <i>Advanced Healthcare Materials</i> , 2019 , 8, e1900608	10.1	125
2308	Layer-controllable WS2-reduced graphene oxide hybrid nanosheets with high electrocatalytic activity for hydrogen evolution. <i>Nanoscale</i> , 2015 , 7, 10391-7	7.7	124
2307	pi-Conjugated chelating polymers with charged iridium complexes in the backbones: synthesis, characterization, energy transfer, and electrochemical properties. <i>Chemistry - A European Journal</i> , 2006 , 12, 4351-61	4.8	124
2306	Nanoionics-Enabled Memristive Devices: Strategies and Materials for Neuromorphic Applications. <i>Advanced Electronic Materials</i> , 2017 , 3, 1600510	6.4	123
2305	Bi2MoO6 nanobelts for crystal facet-enhanced photocatalysis. <i>Small</i> , 2014 , 10, 2791-5, 2741	11	123
2304	"Dual Lock-and-Key"-Controlled Nanoprobes for Ultrahigh Specific Fluorescence Imaging in the Second Near-Infrared Window. <i>Advanced Materials</i> , 2018 , 30, e1801140	24	122
2303	Unexpected one-pot method to synthesize spiro[fluorene-9,9'-xanthene] building blocks for blue-light-emitting materials. <i>Organic Letters</i> , 2006 , 8, 2787-90	6.2	122
2302	New efficient blue light emitting polymer for light emitting diodes. <i>Chemical Communications</i> , 1999 , 1837-1838	5.8	122
2301	2D Intermediate Suppression for Efficient Ruddlesden P opper (RP) Phase Lead-Free Perovskite Solar Cells. <i>ACS Energy Letters</i> , 2019 , 4, 1513-1520	20.1	121
2300	Color-tunable ultralong organic room temperature phosphorescence from a multicomponent copolymer. <i>Nature Communications</i> , 2020 , 11, 944	17.4	121

2299	Solving mazes with single-molecule DNA navigators. <i>Nature Materials</i> , 2019 , 18, 273-279	27	121
2298	PDI Derivative through Fine-Tuning the Molecular Structure for Fullerene-Free Organic Solar Cells. <i>ACS Applied Materials & Design Cells</i> , 9, 29924-29931	9.5	120
2297	CN-Containing donor acceptor-type small-molecule materials for thermally activated delayed fluorescence OLEDs. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 7699-7714	7.1	119
2296	Tuning Redox Behavior and Emissive Wavelength of Conjugated Polymers by pl Diblock Structures. <i>Journal of the American Chemical Society</i> , 1998 , 120, 11808-11809	16.4	119
2295	Two-dimensional light-emitting materials: preparation, properties and applications. <i>Chemical Society Reviews</i> , 2018 , 47, 6128-6174	58.5	118
2294	The formation of a carbon nanotubegraphene oxide core@hell structure and its possible applications. <i>Carbon</i> , 2011 , 49, 5071-5078	10.4	118
2293	Impact of Semiconducting Perylene Diimide Nanoparticle Size on Lymph Node Mapping and Cancer Imaging. <i>ACS Nano</i> , 2017 , 11, 4247-4255	16.7	117
2292	Amorphous nickel pyrophosphate microstructures for high-performance flexible solid-state electrochemical energy storage devices. <i>Nano Energy</i> , 2015 , 17, 339-347	17.1	117
2291	Core-shell structured phosphorescent nanoparticles for detection of exogenous and endogenous hypochlorite in live cells ratiometric imaging and photoluminescence lifetime imaging microscopy. <i>Chemical Science</i> , 2015 , 6, 301-307	9.4	117
2290	Submonolayered Ru Deposited on Ultrathin Pd Nanosheets used for Enhanced Catalytic Applications. <i>Advanced Materials</i> , 2016 , 28, 10282-10286	24	117
2289	Hybrid Rhodamine Fluorophores in the Visible/NIR Region for Biological Imaging. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 14026-14043	16.4	116
2288	Supercapacitor electrode based on three-dimensional graphenepolyaniline hybrid. <i>Materials Chemistry and Physics</i> , 2012 , 134, 576-580	4.4	116
2287	Facile and green synthesis of mesoporous Co3O4 nanocubes and their applications for supercapacitors. <i>Nanoscale</i> , 2013 , 5, 6525-9	7.7	116
2286	Alignment controlled growth of single-walled carbon nanotubes on quartz substrates. <i>Nano Letters</i> , 2009 , 9, 4311-9	11.5	116
2285	Organic solid-state lasers: a materials view and future development. <i>Chemical Society Reviews</i> , 2020 ,	58.5	116
2284	Dual-Functional Polyethylene Glycol-b-polyhexanide Surface Coating with in Vitro and in Vivo Antimicrobial and Antifouling Activities. <i>ACS Applied Materials & District Amplied Materials & D</i>	9.5	115
2283	Electrochemically Synthesis of Nickel Cobalt Sulfide for High-Performance Flexible Asymmetric Supercapacitors. <i>Advanced Science</i> , 2018 , 5, 1700375	13.6	115
2282	Selenium-Containing Polymer@Metal-Organic Frameworks Nanocomposites as an Efficient Multiresponsive Drug Delivery System. <i>Advanced Functional Materials</i> , 2017 , 27, 1605465	15.6	114

2281	Side-chain engineering of green color electrochromic polymer materials: toward adaptive camouflage application. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 2269-2273	7.1	114
2280	Dual-Phosphorescent Iridium(III) Complexes Extending Oxygen Sensing from Hypoxia to Hyperoxia. Journal of the American Chemical Society, 2018 , 140, 7827-7834	16.4	114
2279	Controllably tuning excited-state energy in ternary hosts for ultralow-voltage-driven blue electrophosphorescence. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 10104-8	16.4	114
2278	2D Black Phosphorus for Energy Storage and Thermoelectric Applications. <i>Small</i> , 2017 , 13, 1700661	11	113
2277	Understanding the Control of Singlet-Triplet Splitting for Organic Exciton Manipulating: A Combined Theoretical and Experimental Approach. <i>Scientific Reports</i> , 2015 , 5, 10923	4.9	113
2276	Controllable Codoping of Nitrogen and Sulfur in Graphene for Highly Efficient Li-Oxygen Batteries and Direct Methanol Fuel Cells. <i>Chemistry of Materials</i> , 2016 , 28, 1737-1745	9.6	113
2275	Semiconducting Polymer Nanoparticles as Theranostic System for Near-Infrared-II Fluorescence Imaging and Photothermal Therapy under Safe Laser Fluence. <i>ACS Nano</i> , 2020 , 14, 2509-2521	16.7	112
2274	Graphene field-effect transistor and its application for electronic sensing. <i>Small</i> , 2014 , 10, 4042-65	11	112
2273	Supramolecular Polymerization Promoted In Situ Fabrication of Nitrogen-Doped Porous Graphene Sheets as Anode Materials for Li-Ion Batteries. <i>Advanced Energy Materials</i> , 2015 , 5, 1500559	21.8	112
2272	Benzoxazole and benzimidazole heterocycle-grafted graphene for high-performance supercapacitor electrodes. <i>Journal of Materials Chemistry</i> , 2012 , 22, 23439		112
2271	Low-Threshold Distributed-Feedback Lasers Based on Pyrene-Cored Starburst Molecules with 1,3,6,8-Attached Oligo(9,9-Dialkylfluorene) Arms. <i>Advanced Functional Materials</i> , 2009 , 19, 2844-2850	15.6	110
2270	Synthesis of CdTe nanocrystals through program process of microwave irradiation. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 13352-6	3.4	110
2269	BODIPY Derivatives for Photodynamic Therapy: Influence of Configuration versus Heavy Atom Effect. <i>ACS Applied Materials & Acs Applied & Acs</i>	9.5	109
2268	A single phosphine oxide host for high-efficiency white organic light-emitting diodes with extremely low operating voltages and reduced efficiency roll-off. <i>Advanced Materials</i> , 2011 , 23, 2491-6	24	109
2267	Blue-Light-Emitting Cationic Water-Soluble Polyfluorene Derivatives with Tunable Quaternization Degree. <i>Macromolecules</i> , 2002 , 35, 4975-4982	5.5	109
2266	Highly stretchable and autonomously healable epidermal sensor based on multi-functional hydrogel frameworks. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 5949-5956	13	109
2265	Synthesis and Characterization of a New p-n Diblock Light-Emitting Copolymer. <i>Macromolecules</i> , 1998 , 31, 4838-44	5.5	108
2264	Clamped Hybridization Chain Reactions for the Self-Assembly of Patterned DNA Hydrogels. Angewandte Chemie - International Edition, 2017, 56, 2171-2175	16.4	107

Chitosan-based nanocarriers with pH and light dual response for anticancer drug delivery. <i>Biomacromolecules</i> , 2013 , 14, 2601-10	6.9	107
Dicyanometalate chemistry: A type of versatile building block for the construction of cyanide-bridged molecular architectures. <i>Coordination Chemistry Reviews</i> , 2012 , 256, 439-464	23.2	107
Highly crystallized FeOOH for a stable and efficient oxygen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 2021-2028	13	106
Printed gas sensors. Chemical Society Reviews, 2020, 49, 1756-1789	58.5	106
Cationic iridium(III) complex containing both triarylboron and carbazole moieties as a ratiometric fluoride probe that utilizes a switchable triplet-singlet emission. <i>Chemistry - A European Journal</i> , 2010 , 16, 7125-33	4.8	106
Self-assembled chiral nanofibers from ultrathin low-dimensional nanomaterials. <i>Journal of the American Chemical Society</i> , 2015 , 137, 1565-71	16.4	105
Template Synthesis of Shape-Tailorable NiS2 Hollow Prisms as High-Performance Supercapacitor Materials. <i>ACS Applied Materials & ACS ACS Applied Materials & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	104
High-performance CdSInS corellhell nanorod array photoelectrode for photoelectrochemical hydrogen generation. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 535-541	13	104
Nitrogen and phosphorus codoped hierarchically porous carbon as an efficient sulfur host for Li-S batteries. <i>Energy Storage Materials</i> , 2017 , 6, 112-118	19.4	104
Multilayer stacked low-temperature-reduced graphene oxide films: preparation, characterization, and application in polymer memory devices. <i>Small</i> , 2010 , 6, 1536-42	11	104
Materials toward the Upscaling of Perovskite Solar Cells: Progress, Challenges, and Strategies. <i>Advanced Functional Materials</i> , 2018 , 28, 1803753	15.6	104
Tumor-Microenvironment-Responsive Nanoconjugate for Synergistic Antivascular Activity and Phototherapy. <i>ACS Nano</i> , 2018 , 12, 11446-11457	16.7	104
Redox-active triazatruxene-based conjugated microporous polymers for high-performance supercapacitors. <i>Chemical Science</i> , 2017 , 8, 2959-2965	9.4	103
Controllable size-selective method to prepare graphene quantum dots from graphene oxide. <i>Nanoscale Research Letters</i> , 2015 , 10, 55	5	103
Flash-Memory Effect for Polyfluorenes with On-Chain Iridium(III) Complexes. <i>Advanced Functional Materials</i> , 2011 , 21, 979-985	15.6	103
Water-soluble phosphorescent iridium(III) complexes as multicolor probes for imaging of homocysteine and cysteine in living cells. <i>Journal of Materials Chemistry</i> , 2011 , 21, 18974		103
Water-Soluble Cationic Poly(p-phenyleneethynylene)s (PPEs): Effects of Acidity and Ionic Strength on Optical Behavior. <i>Macromolecules</i> , 2005 , 38, 2927-2936	5.5	103
Blue polymer light-emitting diodes from poly(9,9-dihexylfluorene-alt-co-2, 5-didecyloxy-para-phenylene). <i>Applied Physics Letters</i> , 1999 , 75, 3270-3272	3.4	103
	Biomacromolecules, 2013, 14, 2601-10 Dicyanometalate chemistry: A type of versatile building block for the construction of cyanide-bridged molecular architectures. Coordination Chemistry Reviews, 2012, 256, 439-464 Highly crystallized FeOOH for a stable and efficient oxygen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 2021-2028 Printed gas sensors. Chemical Society Reviews, 2020, 49, 1756-1789 Cationic iridium(III) complex containing both triarylboron and carbazole moieties as a ratiometric fluoride probe that utilizes a switchable triplet-singlet emission. Chemistry- A European Journal, 2010, 16, 7125-33 Self-assembled chiral nanofibers from ultrathin low-dimensional nanomaterials. Journal of the American Chemical Society, 2015, 13, 7, 1565-71 Template Synthesis of Shape-Tailorable NiS2 Hollow Prisms as High-Performance Supercapacitor Materials. ACS Applied Materials Bamp; Interfaces, 2015, 7, 25396-401 High-performance CdSūns coreBhell nanorod array photoelectrode for photoelectrochemical hydrogen generation. Journal of Materials Chemistry A, 2015, 3, 535-541 Nitrogen and phosphorus codoped hierarchically porous carbon as an efficient sulfur host for Li-S batteries. Energy Storage Materials, 2017, 6, 112-118 Multilayer stacked low-temperature-reduced graphene oxide films: preparation, characterization, and application in polymer memory devices. Small, 2010, 6, 1536-42 Materials toward the Upscaling of Perovskite Solar Cells: Progress, Challenges, and Strategies. Advanced Functional Materials, 2018, 28, 1803753 Tumor-Microenvironment-Responsive Nanoconjugate for Synergistic Antivascular Activity and Phototherapy, ACS Nano, 2018, 12, 11446-11457 Redox-active triazatruxene-based conjugated microporous polymers for high-performance supercapacitors. Chemical Science, 2017, 8, 2959-2965 Controllable size-selective method to prepare graphene quantum dots from graphene oxide. Nanoscale Research Letters, 2015, 10, 55 Flash-Memory Effect for Polyfuorenes with On-Chain Iridium(III) Comple	Dicyanometalate chemistry: A type of versatile building block for the construction of cyanide-bridged molecular architectures. Coordination Chemistry Reviews, 2012, 256, 439-464 Highly crystallized FeOOH for a stable and efficient oxygen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 2021-2028 Printed gas sensors. Chemical Society Reviews, 2020, 49, 1756-1789 S8.5 Cationic iridium(III) complex containing both triarylboron and carbazole moieties as a ratiometric fluoride probe that utilizes a switchable triplet-singlet emission. Chemistry - A European Journal, 2010, 16, 7125-33 Self-assembled chiral nanofibers from ultrathin low-dimensional nanomaterials. Journal of the American Chemical Society, 2015, 137, 1565-71 Template Synthesis of Shape-Tailorable NiS2 Hollow Prisms as High-Performance Supercapacitor Materials. ACS Applied Materials Ramp; Interfaces, 2015, 7, 25396-401 High-performance CdSūnS corethell nanorod array photoelectrode for photoelectrochemical hydrogen generation. Journal of Materials Chemistry A, 2015, 3, 535-541 Nitrogen and phosphorus codoped hierarchically porous carbon as an efficient sulfur host for Li-S batteries. Energy Storage Materials, 2017, 6, 112-118 Multilayer stacked low-temperature-reduced graphene oxide films: preparation, characterization, and application in polymer memory devices. Small, 2010, 6, 1536-42 Materials toward the Upscaling of Perovskite Solar Cells: Progress, Challenges, and Strategies. Advanced Functional Materials, 2018, 28, 1803753 Tumor-Microenvironment-Responsive Nanoconjugate for Synergistic Antivascular Activity and Phototherapy. ACS Nano, 2018, 12, 11446-11457 Redox-active triazatruxene-based conjugated microporous polymers for high-performance supercapacitors. Chemical Science, 2017, 8, 2959-2965 94 Controllable size-selective method to prepare graphene quantum dots from graphene oxide. Nanoscale Research Letters, 2015, 10, 55 Water-soluble phosphorescent iridium(III) complexes as multicolor probes for imaging of homocystein

2245	A nanohybrid consisting of NiPS3 nanoparticles coupled with defective graphene as a pH-universal electrocatalyst for efficient hydrogen evolution. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 23536-23542	13	102
2244	Small-Molecule-Based Organic Field-Effect Transistor for Nonvolatile Memory and Artificial Synapse. <i>Advanced Functional Materials</i> , 2019 , 29, 1904602	15.6	102
2243	Rhodamine-modified upconversion nanophosphors for ratiometric detection of hypochlorous acid in aqueous solution and living cells. <i>Small</i> , 2014 , 10, 3560-7	11	102
2242	Resonance-Activated Spin-Flipping for Efficient Organic Ultralong Room-Temperature Phosphorescence. <i>Advanced Materials</i> , 2018 , 30, e1803856	24	102
2241	Rational design of an "OFF-ON" phosphorescent chemodosimeter based on an iridium(III) complex and its application for time-resolved luminescent detection and bioimaging of cysteine and homocysteine. <i>Chemistry - A European Journal</i> , 2013 , 19, 1311-9	4.8	101
2240	Hyperbranched Oxadiazole-Containing Polyfluorenes: Toward Stable Blue Light PLEDs. <i>Macromolecules</i> , 2005 , 38, 6755-6758	5.5	101
2239	Unraveling Oxygen Evolution Reaction on Carbon-Based Electrocatalysts: Effect of Oxygen Doping on Adsorption of Oxygenated Intermediates. <i>ACS Energy Letters</i> , 2017 , 2, 294-300	20.1	100
2238	Nickel-Cobalt Oxide Decorated Three-Dimensional Graphene as an Enzyme Mimic for Glucose and Calcium Detection. <i>ACS Applied Materials & Description (Materials & Descriptio</i>	9.5	100
2237	Optimization of opto-electronic property and device efficiency of polyfluorenes by tuning structure and morphology. <i>Polymer International</i> , 2006 , 55, 473-490	3.3	100
2236	Surface Functionalization of Black Phosphorus via Potassium toward High-Performance Complementary Devices. <i>Nano Letters</i> , 2017 , 17, 4122-4129	11.5	99
2235	Enabling long-lived organic room temperature phosphorescence in polymers by subunit interlocking. <i>Nature Communications</i> , 2019 , 10, 4247	17.4	99
2234	Bioapplications of small molecule Aza-BODIPY: from rational structural design to in vivo investigations. <i>Chemical Society Reviews</i> , 2020 , 49, 7533-7567	58.5	99
2233	Engineering Lysosome-Targeting BODIPY Nanoparticles for Photoacoustic Imaging and Photodynamic Therapy under Near-Infrared Light. <i>ACS Applied Materials & Description of the Action Section</i> , 8, 1203	9-47	99
2232	Artificial Sensory Memory. <i>Advanced Materials</i> , 2020 , 32, e1902434	24	98
2231	Screen-Printed Poly(3,4-Ethylenedioxythiophene):Poly(Styrenesulfonate) Grids as ITO-Free Anodes for Flexible Organic Light-Emitting Diodes. <i>Advanced Functional Materials</i> , 2018 , 28, 1705955	15.6	97
2230	A New Blue Light-Emitting Polymer Containing Substituted Thiophene and an Arylene-1,3,4-oxadiazole Moiety. <i>Advanced Materials</i> , 1998 , 10, 593-596	24	97
2229	High-Performance Flexible Photodetectors based on High-Quality Perovskite Thin Films by a Vapor-Solution Method. <i>Advanced Materials</i> , 2017 , 29, 1703256	24	96
2228	Thiophene-Based Conjugated Polymers for Light-Emitting Diodes: Effect of Aryl Groups on Photoluminescence Efficiency and Redox Behavior. <i>Macromolecules</i> , 2001 , 34, 7241-7248	5.5	96

(2015-2015)

2227	N-Doped carbon coated hollow Ni(x)Co(9-x)S8 urchins for a high performance supercapacitor. <i>Nanoscale</i> , 2015 , 7, 3155-63	7.7	95
2226	Butterfly-shaped conjugated oligoelectrolyte/graphene oxide integrated assay for light-up visual detection of heparin. <i>Analytical Chemistry</i> , 2011 , 83, 7849-55	7.8	95
2225	Thermally activated triplet exciton release for highly efficient tri-mode organic afterglow. <i>Nature Communications</i> , 2020 , 11, 842	17.4	94
2224	Photosensitizer synergistic effects: D-A-D structured organic molecule with enhanced fluorescence and singlet oxygen quantum yield for photodynamic therapy. <i>Chemical Science</i> , 2018 , 9, 2188-2194	9.4	94
2223	Controllable Organic Resistive Switching Achieved by One-Step Integration of Cone-Shaped Contact. <i>Advanced Materials</i> , 2017 , 29, 1701333	24	94
2222	Multifunctional Phosphorescent Conjugated Polymer Dots for Hypoxia Imaging and Photodynamic Therapy of Cancer Cells. <i>Advanced Science</i> , 2016 , 3, 1500155	13.6	94
2221	Enhancing the Performance of Inverted Perovskite Solar Cells via Grain Boundary Passivation with Carbon Quantum Dots. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 3044-3052	9.5	94
2220	Facile fabrication of highly efficient g-CN/BiFeOIhanocomposites with enhanced visible light photocatalytic activities. <i>Journal of Colloid and Interface Science</i> , 2015 , 448, 17-23	9.3	93
2219	Direct Hybridization of Noble Metal Nanostructures on 2D Metal-Organic Framework Nanosheets To Catalyze Hydrogen Evolution. <i>Nano Letters</i> , 2019 , 19, 8447-8453	11.5	93
2218	A Rational Molecular Design of Phase Polydiarylfluorenes: Synthesis, Morphology, and Organic Lasers. <i>Macromolecules</i> , 2014 , 47, 1001-1007	5.5	93
2217	Two-dimensional CuSe nanosheets with microscale lateral size: synthesis and template-assisted phase transformation. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 5083-7	16.4	93
2216	Carborane tuning of photophysical properties of phosphorescent iridium(III) complexes. <i>Chemical Communications</i> , 2013 , 49, 4746-8	5.8	93
2215	A small change in molecular structure, a big difference in the AIEE mechanism. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 5289-96	3.6	93
2214	FRET-based probe for fluoride based on a phosphorescent iridium(III) complex containing triarylboron groups. <i>Journal of Materials Chemistry</i> , 2011 , 21, 7572		93
2213	Promising Optoelectronic Materials: Polymers Containing Phosphorescent Iridium(III) Complexes. <i>Macromolecular Rapid Communications</i> , 2010 , 31, 794-807	4.8	93
2212	Growth of Quasi-Free-Standing Single-Layer Blue Phosphorus on Tellurium Monolayer Functionalized Au(111). <i>ACS Nano</i> , 2017 , 11, 4943-4949	16.7	92
2211	Solvothermal synthesis of microporous, crystalline covalent organic framework nanofibers and their colorimetric nanohybrid structures. <i>ACS Applied Materials & District Research</i> , 2013, 5, 8845-9	9.5	92
2210	Tuning a Weak Emissive Blue Host to Highly Efficient Green Dopant by a CN in Tetracarbazolepyridines for Solution-Processed Thermally Activated Delayed Fluorescence Devices. <i>Advanced Optical Materials</i> , 2015 , 3, 786-790	8.1	91

2209	Controlled synthesis of zinc cobalt sulfide nanostructures in oil phase and their potential applications in electrochemical energy storage. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 11462-11470	13	91
2208	Efficient 9-alkylphenyl-9-pyrenylfluorene substituted pyrene derivatives with improved hole injection for blue light-emitting diodes. <i>Journal of Materials Chemistry</i> , 2006 , 16, 4074		91
2207	Highly Efficient Ultralong Organic Phosphorescence through Intramolecular-Space Heavy-Atom Effect. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 595-600	6.4	90
2206	Utilizing d-pBonds for Ultralong Organic Phosphorescence. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 6645-6649	16.4	90
2205	Strong Luminescent Iridium Complexes with CN=N Structure in Ligands and Their Potential in Efficient and Thermally Stable Phosphorescent OLEDs. <i>Advanced Materials</i> , 2009 , 21, 339-343	24	90
2204	P-type electrical, photoconductive, and anomalous ferromagnetic properties of Cu2O nanowires. <i>Applied Physics Letters</i> , 2009 , 94, 113106	3.4	90
2203	TiCT MXene for Sensing Applications: Recent Progress, Design Principles, and Future Perspectives. <i>ACS Nano</i> , 2021 , 15, 3996-4017	16.7	90
2202	Robust Stacking-Independent Ultrafast Charge Transfer in MoS/WS Bilayers. ACS Nano, 2017 , 11, 12020)-18. 9 20	5 89
2201	A general strategy for the facile synthesis of 2,7-dibromo-9-heterofluorenes. <i>Organic Letters</i> , 2006 , 8, 203-5	6.2	89
2200	Ag@MoS Core-Shell Heterostructure as SERS Platform to Reveal the Hydrogen Evolution Active Sites of Single-Layer MoS. <i>Journal of the American Chemical Society</i> , 2020 , 142, 7161-7167	16.4	88
2199	Graphene and cobalt phosphide nanowire composite as an anode material for high performance lithium-ion batteries. <i>Nano Research</i> , 2016 , 9, 612-621	10	88
2198	Gold-nanoparticle-mediated jigsaw-puzzle-like assembly of supersized plasmonic DNA origami. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 2966-9	16.4	88
2197	Dendritic europium complex as a single dopant for white-light electroluminescent devices. <i>Journal of Materials Chemistry</i> , 2005 , 15, 3221		88
2196	Morphology and Wettability Tunable Two-Dimensional Superstructure Assembled by Hydrogen Bonds and Hydrophobic Interactions. <i>Chemistry of Materials</i> , 2006 , 18, 2974-2981	9.6	88
2195	Stimuli-Responsive Circularly Polarized Organic Ultralong Room Temperature Phosphorescence. Angewandte Chemie - International Edition, 2020 , 59, 4756-4762	16.4	88
2194	J-Aggregate squaraine nanoparticles with bright NIR-II fluorescence for imaging guided photothermal therapy. <i>Chemical Communications</i> , 2018 , 54, 13395-13398	5.8	88
2193	The self-assembly of shape controlled functionalized grapheneMnO2 composites for application as supercapacitors. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 9178-9184	13	87
2192	Harmonizing Triplet Level and Ambipolar Characteristics of Wide-Gap Phosphine Oxide Hosts toward Highly Efficient and Low Driving Voltage Blue and Green PHOLEDs: An Effective Strategy Based on Spiro-Systems. <i>Chemistry of Materials</i> , 2011 , 23, 5331-5339	9.6	87

(2019-2009)

2191	Facile synthesis of spirocyclic aromatic hydrocarbon derivatives based on o-halobiaryl route and domino reaction for deep-blue organic semiconductors. <i>Organic Letters</i> , 2009 , 11, 3850-3	6.2	87	
2190	Fabrication of Graphene Nanodisk Arrays Using Nanosphere Lithography. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 6529-6532	3.8	87	
2189	A versatile efficient one-step approach for carbazole-pyridine hybrid molecules: highly efficient host materials for blue phosphorescent OLEDs. <i>Chemical Communications</i> , 2015 , 51, 1650-3	5.8	86	
2188	Phase-controlled synthesis of ⊕NiS nanoparticles confined in carbon nanorods for high performance supercapacitors. <i>Scientific Reports</i> , 2014 , 4, 7054	4.9	86	
2187	High-Efficiency Flexible Solar Cells Based on Organometal Halide Perovskites. <i>Advanced Materials</i> , 2016 , 28, 4532-40	24	86	
2186	Enhancing Organic Phosphorescence by Manipulating Heavy-Atom Interaction. <i>Crystal Growth and Design</i> , 2016 , 16, 808-813	3.5	86	
2185	Dynamic metal-ligand coordination for multicolour and water-jet rewritable paper. <i>Nature Communications</i> , 2018 , 9, 3	17.4	85	
2184	Fast synthesis of porous NiCo2O4 hollow nanospheres for a high-sensitivity non-enzymatic glucose sensor. <i>Applied Surface Science</i> , 2017 , 396, 804-811	6.7	85	
2183	Bismuth-based photocatalysts for solar energy conversion. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 24307-24352	13	85	
2182	Mixed-cation perovskite solar cells in space. <i>Science China: Physics, Mechanics and Astronomy</i> , 2019 , 62, 1	3.6	85	
2181	Stimuli-responsive solid-state emission from o-carboranelletraphenylethene dyads induced by twisted intramolecular charge transfer in the crystalline state. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 19-28	7.1	85	
2180	High-performance stretchable transparent electrodes based on silver nanowires synthesized via an eco-friendly halogen-free method. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 10369-10376	7.1	84	
2179	Circularly Polarized Phosphorescent Electroluminescence from Chiral Cationic Iridium(III) Isocyanide Complexes. <i>Advanced Optical Materials</i> , 2017 , 5, 1700359	8.1	84	
2178	3D NiO hollow sphere/reduced graphene oxide composite for high-performance glucose biosensor. <i>Scientific Reports</i> , 2017 , 7, 5220	4.9	84	
2177	Utilization of Electrochromically Luminescent Transition-Metal Complexes for Erasable Information Recording and Temperature-Related Information Protection. <i>Advanced Materials</i> , 2016 , 28, 7137-42	24	84	
2176	Penetration depth tunable BODIPY derivatives for pH triggered enhanced photothermal/photodynamic synergistic therapy. <i>Chemical Science</i> , 2019 , 10, 268-276	9.4	83	
2175	Semiconducting polymer nanotheranostics for NIR-II/Photoacoustic imaging-guided photothermal initiated nitric oxide/photothermal therapy. <i>Biomaterials</i> , 2019 , 217, 119304	15.6	83	
2174	Invoking ultralong room temperature phosphorescence of purely organic compounds through H-aggregation engineering. <i>Materials Horizons</i> , 2019 , 6, 1259-1264	14.4	83	

2173	Enhanced Performance of Red Perovskite Light-Emitting Diodes through the Dimensional Tailoring of Perovskite Multiple Quantum Wells. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 881-886	6.4	83
2172	Rational design of metallophosphors with tunable aggregation-induced phosphorescent emission and their promising applications in time-resolved luminescence assay and targeted luminescence imaging of cancer cells. <i>Journal of Materials Chemistry</i> , 2012 , 22, 22167		83
2171	Orientation Controllable Growth of MoO3 Nanoflakes: Micro-Raman, Field Emission, and Birefringence Properties. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 20259-20263	3.8	83
2170	Simple conjugated polymers with on-chain phosphorescent iridium(III) complexes: toward ratiometric chemodosimeters for detecting trace amounts of mercury(II). <i>Chemistry - A European Journal</i> , 2010 , 16, 12158-67	4.8	83
2169	Polyfluorene-Based Light-Emitting Rod©oil Block Copolymers. <i>Macromolecules</i> , 2005 , 38, 8494-8502	5.5	83
2168	Organic phosphors with bright triplet excitons for efficient X-ray-excited luminescence. <i>Nature Photonics</i> , 2021 , 15, 187-192	33.9	83
2167	Management of perovskite intermediates for highly efficient inverted planar heterojunction perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 3193-3202	13	82
2166	Biocompatible small organic molecule phototheranostics for NIR-II fluorescence/photoacoustic imaging and simultaneous photodynamic/photothermal combination therapy. <i>Materials Chemistry Frontiers</i> , 2019 , 3, 650-655	7.8	82
2165	Graphene nanomesh: new versatile materials. <i>Nanoscale</i> , 2014 , 6, 13301-13	7.7	82
2164	A Phosphorescent Iridium(III) Complex-Modified Nanoprobe for Hypoxia Bioimaging Via Time-Resolved Luminescence Microscopy. <i>Advanced Science</i> , 2015 , 2, 1500107	13.6	82
2163	Metal halide perovskites: stability and sensing-ability. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 10121-1	0 / 137	82
2162	An aza-BODIPY photosensitizer for photoacoustic and photothermal imaging guided dual modal cancer phototherapy. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 1566-1573	7.3	81
2161	Highly Water-Stable Lanthanide-Oxalate MOFs with Remarkable Proton Conductivity and Tunable Luminescence. <i>Advanced Materials</i> , 2017 , 29, 1701804	24	81
2160	Fabricating an Aqueous Symmetric Supercapacitor with a Stable High Working Voltage of 2 V by Using an Alkaline-Acidic Electrolyte. <i>Advanced Science</i> , 2019 , 6, 1801665	13.6	81
2159	Organic Light-Emitting Field-Effect Transistors: Device Geometries and Fabrication Techniques. <i>Advanced Materials</i> , 2018 , 30, e1802466	24	81
2158	Heterogeneous catalysts based on mesoporous metal o rganic frameworks. <i>Coordination Chemistry Reviews</i> , 2018 , 373, 199-232	23.2	80
2157	Rational Design of Nanocarriers for Intracellular Protein Delivery. <i>Advanced Materials</i> , 2019 , 31, e19027	9214	80
2156	Upconversion Luminescent Chemodosimeter Based on NIR Organic Dye for Monitoring Methylmercury In Vivo. <i>Advanced Functional Materials</i> , 2016 , 26, 1945-1953	15.6	80

(2018-2015)

2155	Blue Thermally Activated Delayed Fluorescence Diodes through Compatibility Optimization. Chemistry of Materials, 2015 , 27, 5131-5140	9.6	79	
2154	Uniform manganese hexacyanoferrate hydrate nanocubes featuring superior performance for low-cost supercapacitors and nonenzymatic electrochemical sensors. <i>Nanoscale</i> , 2015 , 7, 16012-9	7.7	79	
2153	Potential switchable circularly polarized luminescence from chiral cyclometalated platinum(II) complexes. <i>Inorganic Chemistry</i> , 2015 , 54, 143-52	5.1	79	
2152	Recent Progress in Polymer White Light-Emitting Materials and Devices. <i>Macromolecular Chemistry and Physics</i> , 2013 , 214, 314-342	2.6	79	
2151	Preparation and Characterization of Polyfluorene-Based Supramolecular EConjugated Polymer Gels. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 4418-4424	3.8	79	
2150	Synthesis and Characterization of Pyrene-Centered Starburst Oligofluorenes. <i>Macromolecular Rapid Communications</i> , 2008 , 29, 659-664	4.8	79	
2149	New Phenyl-Substituted PPV Derivatives for Polymer Light-emitting DiodesBynthesis, Characterization and StructureBroperty Relationship Study. <i>Macromolecules</i> , 2003 , 36, 1009-1020	5.5	79	
2148	Flexible, transparent nanocellulose paper-based perovskite solar cells. <i>Npj Flexible Electronics</i> , 2019 , 3,	10.7	79	
2147	Cubic Prussian blue crystals from a facile one-step synthesis as positive electrode material for superior potassium-ion capacitors. <i>Electrochimica Acta</i> , 2017 , 232, 106-113	6.7	78	
2146	Tailoring Component Interaction for Air-Processed Efficient and Stable All-Inorganic Perovskite Photovoltaic. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 13354-13361	16.4	78	
2145	Highly selective phosphorescent nanoprobes for sensing and bioimaging of homocysteine and cysteine. <i>Journal of Materials Chemistry</i> , 2012 , 22, 7894		78	
2144	Supramolecular Is tacking Pyrene-Functioned Fluorenes: Toward Efficient Solution-Processable Small Molecule Blue and White Organic Light Emitting Diodes. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 4641-4647	3.8	78	
2143	A Novel Series of pl Diblock Light-Emitting Copolymers Based on Oligothiophenes and 1,4-Bis(oxadiazolyl)-2,5-dialkyloxybenzene. <i>Macromolecules</i> , 1999 , 32, 118-126	5.5	78	
2142	Thermally Activated Delayed Fluorescence Organic Dots (TADF Odots) for Time-Resolved and Confocal Fluorescence Imaging in Living Cells and In Vivo. <i>Advanced Science</i> , 2017 , 4, 1600166	13.6	77	
2141	Stable, High-Sensitivity and Fast-Response Photodetectors Based on Lead-Free Cs2AgBiBr6 Double Perovskite Films. <i>Advanced Optical Materials</i> , 2019 , 7, 1801732	8.1	77	
2140	Conformal dispersed cobalt nanoparticles in hollow carbon nanotube arrays for flexible Zn-air and Al-air batteries. <i>Chemical Engineering Journal</i> , 2019 , 369, 988-995	14.7	77	
2139	The inductive-effect of electron withdrawing trifluoromethyl for thermally activated delayed fluorescence: tunable emission from tetra- to penta-carbazole in solution processed blue OLEDs. <i>Chemical Communications</i> , 2015 , 51, 13024-7	5.8	77	
2138	Single-Molecule Analysis of MicroRNA and Logic Operations Using a Smart Plasmonic Nanobiosensor. <i>Journal of the American Chemical Society</i> , 2018 , 140, 3988-3993	16.4	77	

2137	Low-Cost N,N?-Bicarbazole-Based Dopant-Free Hole-Transporting Materials for Large-Area Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2018 , 8, 1800538	21.8	77
2136	StimuliBesponsive metallopolymers. <i>Coordination Chemistry Reviews</i> , 2016 , 319, 180-195	23.2	77
2135	Sky-blue perovskite light-emitting diodes based on quasi-two-dimensional layered perovskites. <i>Chinese Chemical Letters</i> , 2017 , 28, 29-31	8.1	77
2134	The synthesis and characterization of an efficient green electroluminescent conjugated polymer: poly[2,7-bis(4-hexylthienyl)-9,9-dihexylfluorene]. <i>Chemical Communications</i> , 2000 , 1631-1632	5.8	77
2133	Effect of Ln (Ln=La, Pr) and Co co-doped on the magnetic and ferroelectric properties of BiFeO3 nanoparticles. <i>Journal of Alloys and Compounds</i> , 2014 , 584, 520-523	5.7	76
2132	On the origin of the shift in color in white organic light-emitting diodes. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 3508	7.1	76
2131	Facile synthesis of complicated 9,9-diarylfluorenes based on BF3.Et2O-mediated Friedel-Crafts reaction. <i>Organic Letters</i> , 2006 , 8, 3701-4	6.2	76
2130	Buffer-layer-induced barrier reduction: Role of tunneling in organic light-emitting devices. <i>Applied Physics Letters</i> , 2004 , 84, 425-427	3.4	76
2129	A HO self-sufficient nanoplatform with domino effects for thermal-responsive enhanced chemodynamic therapy. <i>Chemical Science</i> , 2020 , 11, 1926-1934	9.4	76
2128	Anthracene-based semiconductors for organic field-effect transistors. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 7416-7444	7.1	76
2127	Intrinsic point defects in inorganic perovskite CsPbI3 from first-principles prediction. <i>Applied Physics Letters</i> , 2017 , 111, 162106	3.4	75
2126	Photothermal-pH-hypoxia responsive multifunctional nanoplatform for cancer photo-chemo therapy with negligible skin phototoxicity. <i>Biomaterials</i> , 2019 , 221, 119422	15.6	75
2125	pH-Responsive PEG-Doxorubicin-Encapsulated Aza-BODIPY Nanotheranostic Agent for Imaging-Guided Synergistic Cancer Therapy. <i>Advanced Healthcare Materials</i> , 2018 , 7, e1701272	10.1	75
2124	Enabling Ffster Resonance Energy Transfer from Large Nanocrystals through Energy Migration. Journal of the American Chemical Society, 2016 , 138, 15972-15979	16.4	75
2123	Hierarchical carbon@Ni3S2@MoS2 double coreBhell nanorods for high-performance supercapacitors. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 1319-1325	13	75
2122	A Flexible Multimodal Sensor That Detects Strain, Humidity, Temperature, and Pressure with Carbon Black and Reduced Graphene Oxide Hierarchical Composite on Paper. <i>ACS Applied Materials & Materials (ACS Applied Materials ACS Applied Materials ACS Applied Materials ACS Applied Materials (ACS Applied Materials ACS Applied Materials ACS ACS APPLIED MATERIAL ACS APPL</i>	9.5	75
2121	Synthesis, Characterization, and Fluorescence Quenching of Novel Cationic Phenyl-Substituted Poly(p-phenylenevinylene)s. <i>Macromolecules</i> , 2003 , 36, 6976-6984	5.5	75
2120	A light-induced nitric oxide controllable release nano-platform based on diketopyrrolopyrrole derivatives for pH-responsive photodynamic/photothermal synergistic cancer therapy. <i>Chemical Science</i> , 2018 , 9, 8103-8109	9.4	75

2119	Recent advances in the development of NIR-II organic emitters for biomedicine. <i>Coordination Chemistry Reviews</i> , 2020 , 415, 213318	23.2	74
2118	Room-temperature 2D semiconductor activated vertical-cavity surface-emitting lasers. <i>Nature Communications</i> , 2017 , 8, 543	17.4	74
2117	Cyanide-bridged assemblies constructed from capped tetracyanometalate building blocks [MA(ligand)(CN)4]1/2[(MA = Fe or Cr). <i>Coordination Chemistry Reviews</i> , 2012 , 256, 2795-2815	23.2	74
2116	In Situ Synthesis of Reduced Graphene Oxide and Gold Nanocomposites for Nanoelectronics and Biosensing. <i>Nanoscale Research Letters</i> , 2011 , 6, 60	5	74
2115	Synthesis, structure, and optoelectronic properties of phosphafluorene copolymers. <i>Organic Letters</i> , 2008 , 10, 2913-6	6.2	74
2114	Teaching an Old Anchoring Group New Tricks: Enabling Low-Cost, Eco-Friendly Hole-Transporting Materials for Efficient and Stable Perovskite Solar Cells. <i>Journal of the American Chemical Society</i> , 2020 , 142, 16632-16643	16.4	74
2113	Repurposed Leather with Sensing Capabilities for Multifunctional Electronic Skin. <i>Advanced Science</i> , 2019 , 6, 1801283	13.6	74
2112	Deciphering the intersystem crossing in near-infrared BODIPY photosensitizers for highly efficient photodynamic therapy. <i>Chemical Science</i> , 2019 , 10, 3096-3102	9.4	73
2111	Reduced-Dimensional Perovskite Enabled by Organic Diamine for Efficient Photovoltaics. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 2349-2356	6.4	73
2 110	Flexible and stretchable metal oxide nanofiber networks for multimodal and monolithically integrated wearable electronics. <i>Nature Communications</i> , 2020 , 11, 2405	17.4	73
2109	Manipulating efficient light emission in two-dimensional perovskite crystals by pressure-induced anisotropic deformation. <i>Science Advances</i> , 2019 , 5, eaav9445	14.3	73
2108	Electrostatically Assembling 2D Nanosheets of MXene and MOF-Derivatives into 3D Hollow Frameworks for Enhanced Lithium Storage. <i>Small</i> , 2019 , 15, e1904255	11	73
2107	Black Phosphorus Quantum Dots. <i>Angewandte Chemie</i> , 2015 , 127, 3724-3728	3.6	73
2106	Chemoselective photodeoxidization of graphene oxide using sterically hindered amines as catalyst: synthesis and applications. <i>ACS Nano</i> , 2012 , 6, 3027-33	16.7	73
2105	Highly improved electroluminescence from a series of novel Eu(III) complexes with functional single-coordinate phosphine oxide ligands: tuning the intramolecular energy transfer, morphology, and carrier injection ability of the complexes. <i>Chemistry - A European Journal</i> , 2007 , 13, 10281-93	4.8	73
2104	Synthesis of ConjugatedIbnic Block Copolymers by Controlled Radical Polymerization. <i>Macromolecules</i> , 2003 , 36, 304-310	5.5	73
2103	Amorphous Ionic Polymers with Color-Tunable Ultralong Organic Phosphorescence. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 18776-18782	16.4	72
2102	Kinetically controlled assembly of a spirocyclic aromatic hydrocarbon into polyhedral micro/nanocrystals. <i>ACS Nano</i> , 2012 , 6, 5309-19	16.7	72

2101	A graphene nanoribbon network and its biosensing application. <i>Nanoscale</i> , 2011 , 3, 5156-60	7.7	72
2100	Toward High Energy Organic Cathodes for Li-Ion Batteries: A Case Study of Vat Dye/Graphene Composites. <i>Advanced Functional Materials</i> , 2017 , 27, 1603603	15.6	71
2099	Facile Synthetic Route to a Novel Electroluminescent Polymer B oly(p-phenylenevinylene) Containing a Fully Conjugated Aromatic Oxadiazole Side Chain. <i>Macromolecules</i> , 1999 , 32, 8841-8847	5.5	71
2098	A Simple and Effective Chemical Route for the Preparation of Uniform Nonaqueous Gold Colloids. <i>Chemistry of Materials</i> , 1999 , 11, 1144-1147	9.6	71
2097	Prolonging the lifetime of ultralong organic phosphorescence through dihydrogen bonding. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 226-233	7.1	71
2096	Bioorthogonal-targeted 1064´nm excitation theranostic nanoplatform for precise NIR-IIa fluorescence imaging guided efficient NIR-II photothermal therapy. <i>Biomaterials</i> , 2020 , 243, 119934	15.6	70
2095	Single-layer transition metal dichalcogenide nanosheet-assisted assembly of aggregation-induced emission molecules to form organic nanosheets with enhanced fluorescence. <i>Advanced Materials</i> , 2014 , 26, 1735-9	24	70
2094	The production of carbon microtubes by the carbonization of catkins and their use in the oxygen reduction reaction. <i>Carbon</i> , 2011 , 49, 5292-5297	10.4	70
2093	DNA biosensors based on water-soluble conjugated polymers. <i>Biosensors and Bioelectronics</i> , 2011 , 26, 2154-64	11.8	70
2092	A Phototheranostic Strategy to Continuously Deliver Singlet Oxygen in the Dark and Hypoxic Tumor Microenvironment. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 8833-8838	16.4	70
2091	Multiple-Quantum-Well Perovskites for High-Performance Light-Emitting Diodes. <i>Advanced Materials</i> , 2020 , 32, e1904163	24	70
2090	Effect of oxygen adsorbability on the control of Li2O2 growth in Li-O2 batteries: Implications for cathode catalyst design. <i>Nano Energy</i> , 2017 , 36, 68-75	17.1	69
2089	Interfacial Interactions in van der Waals Heterostructures of MoS and Graphene. <i>ACS Nano</i> , 2017 , 11, 11714-11723	16.7	69
2088	Phase-Change Materials Based Nanoparticles for Controlled Hypoxia Modulation and Enhanced Phototherapy. <i>Advanced Functional Materials</i> , 2019 , 29, 1906805	15.6	69
2087	Thermochromic Lead-Free Halide Double Perovskites. <i>Advanced Functional Materials</i> , 2019 , 29, 1807375	515.6	69
2086	Solution-processed copper nanowire flexible transparent electrodes with PEDOT:PSS as binder, protector and oxide-layer scavenger for polymer solar cells. <i>Nano Research</i> , 2015 , 8, 1017-1025	10	69
2085	A Mitochondria-Targeted Photosensitizer Showing Improved Photodynamic Therapy Effects Under Hypoxia. <i>Angewandte Chemie</i> , 2016 , 128, 10101-10105	3.6	69
2084	Highly Transparent and Flexible All-Solid-State Supercapacitors Based on Ultralong Silver Nanowire Conductive Networks. <i>ACS Applied Materials & Discrete Supercapacitors</i> 10, 32536-32542	9.5	69

(2010-2012)

2083	A new colorimetric and fluorescent ratiometric sensor for Hg2+ based on 4-pyren-1-yl-pyrimidine. <i>Tetrahedron</i> , 2012 , 68, 3129-3134	2.4	69
2082	Synthesis of a novel cationic water-soluble efficientblue photoluminescent conjugated polymer. <i>Chemical Communications</i> , 2000 , 551-552	5.8	69
2081	Interlayer Hydrogen-Bonded Metal Porphyrin Frameworks/MXene Hybrid Film with High Capacitance for Flexible All-Solid-State Supercapacitors. <i>Small</i> , 2019 , 15, e1901351	11	68
2080	2-Pyridone-functionalized Aza-BODIPY photosensitizer for imaging-guided sustainable phototherapy. <i>Biomaterials</i> , 2018 , 183, 1-9	15.6	68
2079	Stable and bright formamidinium-based perovskite light-emitting diodes with high energy conversion efficiency. <i>Nature Communications</i> , 2019 , 10, 3624	17.4	68
2078	Luminescent gold nanocluster-based sensing platform for accurate HS detection and with improved anti-interference. <i>Light: Science and Applications</i> , 2017 , 6, e17107	16.7	68
2077	Management of Crystallization Kinetics for Efficient and Stable Low-Dimensional Ruddlesden-Popper (LDRP) Lead-Free Perovskite Solar Cells. <i>Advanced Science</i> , 2019 , 6, 1800793	13.6	68
2076	Rapid Crystallization for Efficient 2D Ruddlesden B opper (2DRP) Perovskite Solar Cells. <i>Advanced Functional Materials</i> , 2019 , 29, 1806831	15.6	68
2075	Wax-Sealed Theranostic Nanoplatform for Enhanced Afterglow Imaging Quided Photothermally Triggered Photodynamic Therapy. <i>Advanced Functional Materials</i> , 2018 , 28, 1804317	15.6	68
2074	Nitrogen-enriched pseudographitic anode derived from silk cocoon with tunable flexibility for microbial fuel cells. <i>Nano Energy</i> , 2017 , 32, 382-388	17.1	67
2073	Emerging B00 nm Excited Lanthanide-Doped Upconversion Nanoparticles. <i>Small</i> , 2017 , 13, 1602843	11	67
2072	Photo-Induced Charge-Variable Conjugated Polyelectrolyte Brushes Encapsulating Upconversion Nanoparticles for Promoted siRNA Release and Collaborative Photodynamic Therapy under NIR Light Irradiation. <i>Advanced Functional Materials</i> , 2017 , 27, 1702592	15.6	67
2071	Phosphorescent soft salt for ratiometric and lifetime imaging of intracellular pH variations. <i>Chemical Science</i> , 2016 , 7, 3338-3346	9.4	67
2070	Sensitive Water Probing through Nonlinear Photon Upconversion of Lanthanide-Doped Nanoparticles. <i>ACS Applied Materials & Doped Research</i> 8, 847-53	9.5	67
2069	Chemically engineered graphene oxide as high performance cathode materials for Li-ion batteries. <i>Carbon</i> , 2014 , 76, 148-154	10.4	67
2068	Orthorhombic KSc2F7:Yb/Er nanorods: controlled synthesis and strong red upconversion emission. <i>Nanoscale</i> , 2013 , 5, 11928-32	7.7	67
2067	Enhanced deep-ultraviolet upconversion emission of Gd3+ sensitized by Yb3+ and Ho3+ in NaLuF4 microcrystals under 980 nm excitation. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 2485	7.1	67
2066	Tuning the optoelectronic properties of 4,4'-N,N'-dicarbazole-biphenyl through heteroatom linkage: new host materials for phosphorescent organic light-emitting diodes. <i>Organic Letters</i> , 2010 , 12, 3438-41	6.2	67

2065	Synergistic Effects of Self-Doped Nanostructures as Charge Trapping Elements in Organic Field Effect Transistor Memory. <i>ACS Applied Materials & Distributed & Distributed Materials & Distributed & Distrib</i>	9.5	67
2064	Nanowires assembled from MnCo2O4@C nanoparticles for water splitting and all-solid-state supercapacitor. <i>Nano Research</i> , 2016 , 9, 1300-1309	10	67
2063	A Unique Blend of 2-Fluorenyl-2-anthracene and 2-Anthryl-2-anthracence Showing White Emission and High Charge Mobility. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 722-727	16.4	66
2062	A multifunctional phosphorescent iridium(III) complex for specific nucleus staining and hypoxia monitoring. <i>Chemical Communications</i> , 2015 , 51, 7943-6	5.8	66
2061	A Highly-Efficient Type I Photosensitizer with Robust Vascular-Disruption Activity for Hypoxic-and-Metastatic Tumor Specific Photodynamic Therapy. <i>Small</i> , 2020 , 16, e2001059	11	66
2060	Recent progress of flexible and wearable strain sensors for human-motion monitoring. <i>Journal of Semiconductors</i> , 2018 , 39, 011012	2.3	66
2059	Microwave-assisted solvothermal preparation of nitrogen and sulfur co-doped reduced graphene oxide and graphene quantum dots hybrids for highly efficient oxygen reduction. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 20605-20611	13	66
2058	A novel graphene-polysulfide anode material for high-performance lithium-ion batteries. <i>Scientific Reports</i> , 2013 , 3, 2341	4.9	66
2057	Dynamically adaptive characteristics of resonance variation for selectively enhancing electrical performance of organic semiconductors. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 10491-5	16.4	66
2056	Self-quenched ferrocenyl diketopyrrolopyrrole organic nanoparticles with amplifying photothermal effect for cancer therapy. <i>Chemical Science</i> , 2017 , 8, 7457-7463	9.4	66
2055	Conjugated asymmetric donor-substituted 1,3,5-triazines: new host materials for blue phosphorescent organic light-emitting diodes. <i>Chemistry - A European Journal</i> , 2011 , 17, 10871-8	4.8	66
2054	Effects of heteroatom substitution in spiro-bifluorene hole transport materials. <i>Chemical Science</i> , 2016 , 7, 5007-5012	9.4	66
2053	Template-Assisted Synthesis of Nickel Sulfide Nanowires: Tuning the Compositions for Supercapacitors with Improved Electrochemical Stability. <i>ACS Applied Materials & amp; Interfaces</i> , 2016 , 8, 24645-51	9.5	66
2052	Progressively Exposing Active Facets of 2D Nanosheets toward Enhanced Pseudocapacitive Response and High-Rate Sodium Storage. <i>Advanced Materials</i> , 2019 , 31, e1900526	24	65
2051	Self-Assembly of Semiconducting-Plasmonic Gold Nanoparticles with Enhanced Optical Property for Photoacoustic Imaging and Photothermal Therapy. <i>Theranostics</i> , 2017 , 7, 2177-2185	12.1	65
2050	Emerging New-Generation Photodetectors Based on Low-Dimensional Halide Perovskites. <i>ACS Photonics</i> , 2020 , 7, 10-28	6.3	65
2049	Upconversion Modulation through Pulsed Laser Excitation for Anti-counterfeiting. <i>Scientific Reports</i> , 2017 , 7, 1320	4.9	64
2048	Light programmable/erasable organic field-effect transistor ambipolar memory devices based on the pentacene/PVK active layer. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 5220-5225	7.1	64

(2018-2019)

2047	Multicolor Ultralong Organic Phosphorescence through Alkyl Engineering for 4D Coding Applications. <i>Chemistry of Materials</i> , 2019 , 31, 5584-5591	9.6	64	
2046	Design and applications of gold nanoparticle conjugates by exploiting biomolecule-gold nanoparticle interactions. <i>Nanoscale</i> , 2013 , 5, 2589-99	7.7	64	
2045	Preparation of weavable, all-carbon fibers for non-volatile memory devices. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 13351-5	16.4	64	
2044	Dumbbell-Shaped Spirocyclic Aromatic Hydrocarbon to Control Intermolecular Istacking Interaction for High-Performance Nondoped Deep-Blue Organic Light-Emitting Devices. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 2849-2853	6.4	64	
2043	Synthesis and Nearly Monochromatic Photoluminescence Properties of Conjugated Copolymers Containing Fluorene and Rare Earth Complexes. <i>Macromolecules</i> , 2003 , 36, 6995-7003	5.5	64	
2042	Modification of gold surface by grafting of poly(ethylene glycol) for reduction in protein adsorption and platelet adhesion. <i>Journal of Biomaterials Science, Polymer Edition</i> , 2001 , 12, 515-31	3.5	64	
2041	Stability studies of poly(2-methoxy-5-(2?-ethyl hexyloxy)-p- (phenylene vinylene) [MEH-PPV]. <i>Polymer Degradation and Stability</i> , 1999 , 65, 287-296	4.7	64	
2040	Highly Sensitive, Fast Response Perovskite Photodetectors Demonstrated in Weak Light Detection Circuit and Visible Light Communication System. <i>Small</i> , 2019 , 15, e1903599	11	63	
2039	A Single Composition Architecture-Based Nanoprobe for Ratiometric Photoacoustic Imaging of Glutathione (GSH) in Living Mice. <i>Small</i> , 2018 , 14, e1703400	11	63	
2038	All-Graphene-Based Highly Flexible Noncontact Electronic Skin. <i>ACS Applied Materials & amp; Interfaces</i> , 2017 , 9, 44593-44601	9.5	63	
2037	An Electrochromic Phosphorescent Iridium(III) Complex for Information Recording, Encryption, and Decryption. <i>Advanced Optical Materials</i> , 2015 , 3, 368-375	8.1	63	
2036	Enhancement of electron injection in organic light-emitting devices using an Ag/LiF cathode. <i>Journal of Applied Physics</i> , 2004 , 95, 3828-3830	2.5	63	
2035	Monochromatic light-emitting copolymers of N-vinylcarbazole and Eu-complexed 4-vinylbenzoate and their single layer high luminance PLEDs. <i>Journal of Materials Chemistry</i> , 2004 , 14, 2741		63	
2034	A novel triarylamine-based conjugated polymer and its unusual light-emitting properties. <i>Chemical Communications</i> , 2000 , 681-682	5.8	63	
2033	3D Printed Flexible Strain Sensors: From Printing to Devices and Signals. <i>Advanced Materials</i> , 2021 , 33, e2004782	24	63	
2032	Emerging photothermal-derived multimodal synergistic therapy in combating bacterial infections. <i>Chemical Society Reviews</i> , 2021 , 50, 8762-8789	58.5	63	
2031	DNA origami-based shape IDs for single-molecule nanomechanical genotyping. <i>Nature Communications</i> , 2017 , 8, 14738	17.4	62	
2030	Twisted Molecular Structure on Tuning Ultralong Organic Phosphorescence. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 335-339	6.4	62	

2029	Recent Advances on Activatable NIR-II Fluorescence Probes for Biomedical Imaging. <i>Advanced Optical Materials</i> , 2019 , 7, 1900917	8.1	62	
2028	One-step electrochemical synthesis of a graphene I InO hybrid for improved photocatalytic activity. Materials Research Bulletin, 2013 , 48, 2855-2860	5.1	62	
2027	A Econjugated polymer gelator from polyfluorene-based poly(tertiary alcohol) via the hydrogen-bonded supramolecular functionalization. <i>Polymer Chemistry</i> , 2013 , 4, 477-483	4.9	62	
2026	Polyfluorene-Based Blue-Emitting Materials. <i>Macromolecular Chemistry and Physics</i> , 2009 , 210, 1580-15	9<u>0</u>. 6	62	
2025	Amphiphilic Semiconducting Oligomer for Near-Infrared Photoacoustic and Fluorescence Imaging. <i>ACS Applied Materials & Discourted Fluorescence (Near-Infrared Photoacoustic and Fluorescence Imaging)</i> .	9.5	61	
2024	Inkjet-Printed Small-Molecule Organic Light-Emitting Diodes: Halogen-Free Inks, Printing Optimization, and Large-Area Patterning. <i>ACS Applied Materials & Diodes amp; Interfaces</i> , 2017 , 9, 40533-40540	9.5	61	
2023	Oriented and Uniform Distribution of Dion Dacobson Phase Perovskites Controlled by Quantum Well Barrier Thickness. <i>Solar Rrl</i> , 2019 , 3, 1900090	7.1	61	
2022	Multifunctional supramolecular vesicles for combined photothermal/photodynamic/hypoxia-activated chemotherapy. <i>Chemical Communications</i> , 2018 , 54, 10328-10331	5.8	61	
2021	Dual role of LiF as a hole-injection buffer in organic light-emitting diodes. <i>Applied Physics Letters</i> , 2004 , 84, 2913-2915	3.4	61	
2020	Preparation of Cobalt Sulfide Nanoparticle-Decorated Nitrogen and Sulfur Co-Doped Reduced Graphene Oxide Aerogel Used as a Highly Efficient Electrocatalyst for Oxygen Reduction Reaction. <i>Small</i> , 2016 , 12, 5920-5926	11	61	
2019	Solution-Processed Wide-Bandgap Organic Semiconductor Nanostructures Arrays for Nonvolatile Organic Field-Effect Transistor Memory. <i>Small</i> , 2018 , 14, 1701437	11	61	
2018	Gadolinium-Chelated Conjugated Polymer-Based Nanotheranostics for Photoacoustic/Magnetic Resonance/NIR-II Fluorescence Imaging-Guided Cancer Photothermal Therapy. <i>Theranostics</i> , 2019 , 9, 4168-4181	12.1	60	
2017	Rational Design of a Flexible CNTs@PDMS Film Patterned by Bio-Inspired Templates as a Strain Sensor and Supercapacitor. <i>Small</i> , 2019 , 15, e1805493	11	60	
2016	A cyanine-modified upconversion nanoprobe for NIR-excited imaging of endogenous hydrogen peroxide signaling in vivo. <i>Biomaterials</i> , 2015 , 54, 34-43	15.6	60	
2015	3D assembly of TiC-MXene directed by water/oil interfaces. <i>Nanoscale</i> , 2018 , 10, 3621-3625	7.7	60	
2014	Novel aza-BODIPY based small molecular NIR-II fluorophores for in vivo imaging. <i>Chemical Communications</i> , 2019 , 55, 10920-10923	5.8	60	
2013	A class of wavelength-tunable near-infrared aza-BODIPY dyes and their application for sensing mercury ion. <i>Dyes and Pigments</i> , 2014 , 103, 145-153	4.6	60	
2012	Hyperbranched Phosphorescent Conjugated Polymer Dots with Iridium(III) Complex as the Core for Hypoxia Imaging and Photodynamic Therapy. <i>ACS Applied Materials & Documents and Photodynamic Therapy. ACS Applied Materials & Documents and Photodynamic Therapy. ACS Applied Materials & Documents and Photodynamic Therapy. ACS Applied Materials & Documents and Photodynamic Therapy. Documents and Photodynamic Therapy. ACS Applied Materials & Documents and Photodynamic Therapy. Documents and Photodynamic Therapy. ACS Applied Materials & Documents and Photodynamic Therapy. Documents and Photodynamic Therapy. Documents are provided the Photodynamic Therapy. Documents and Photodynamic Therapy. Documents and Photodynamic Therapy. Documents are provided to the Photodynamic Therapy. Documents and Photodynamic Therapy. Documents are provided to the Photo</i>	33.6	60	

(2014-2016)

2	011	Nanostructures through DNA-Origami-Based Nanoimprinting Lithography. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 8036-40	16.4	60	
2	010	Recent Progress in Metal Halide Perovskite Micro- and Nanolasers. <i>Advanced Optical Materials</i> , 2019 , 7, 1900080	8.1	59	
2	009	Dramatic Enhancement of Power Conversion Efficiency in Polymer Solar Cells by Conjugating Very Low Ratio of Triplet Iridium Complexes to PTB7. <i>Advanced Materials</i> , 2015 , 27, 3546-52	24	59	
2	008	Ferrocene-containing poly(fluorenylethynylene)s for nonvolatile resistive memory devices. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 921-928	7.1	59	
2	007	Enhancing Efficiency and Stability of Perovskite Solar Cells via a Self-Assembled Dopamine Interfacial Layer. <i>ACS Applied Materials & Interfaces</i> , 2018 , 10, 30607-30613	9.5	59	
2	006	Size-dependent programming of the dynamic range of graphene oxide-DNA interaction-based ion sensors. <i>Analytical Chemistry</i> , 2014 , 86, 4047-51	7.8	59	
2	005	A water-soluble phosphorescent polymer for time-resolved assay and bioimaging of cysteine/homocysteine. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 319-329	7.3	59	
2	004	Epitaxial Bi2 FeCrO6 Multiferroic Thin Film as a New Visible Light Absorbing Photocathode Material. <i>Small</i> , 2015 , 11, 4018-26	11	59	
2	003	Nd2O3 Nanoparticles Modified with a Silane-Coupling Agent as a Liquid Laser Medium. <i>Advanced Materials</i> , 2007 , 19, 838-842	24	59	
2	002	A Highly Crystalline and Wide-Bandgap Polydiarylfluorene with Phase Conformation toward Stable Electroluminescence and Dual Amplified Spontaneous Emission. <i>ACS Applied Materials & ACS Applied Materials</i>	9.5	59	
2	001	Paving Metal-Organic Frameworks with Upconversion Nanoparticles via Self-Assembly. <i>Journal of the American Chemical Society</i> , 2018 , 140, 15507-15515	16.4	59	
2	000	V2O5 embedded in vertically aligned carbon nanotube arrays as free-standing electrodes for flexible supercapacitors. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 23727-23736	13	58	
1	999	Dynamic Luminescence Manipulation for Rewritable and Multi-level Security Printing. <i>Matter</i> , 2019 , 1, 1644-1655	12.7	58	
1	998	Centimeter-Sized Single Crystal of Two-Dimensional Halide Perovskites Incorporating Straight-Chain Symmetric Diammonium Ion for X-Ray Detection. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 14896-14902	16.4	58	
1	997	van der Waals Heterojunction between a Bottom-Up Grown Doped Graphene Quantum Dot and Graphene for Photoelectrochemical Water Splitting. <i>ACS Nano</i> , 2020 , 14, 1185-1195	16.7	58	
1	996	PL-WO-TPZ Nanoparticles for Simultaneous Hypoxia-Activated Chemotherapy and Photothermal Therapy. <i>ACS Applied Materials & amp; Interfaces</i> , 2018 , 10, 3405-3413	9.5	58	
1	995	Sensitive fiber microelectrode made of nickel hydroxide nanosheets embedded in highly-aligned carbon nanotube scaffold for nonenzymatic glucose determination. <i>Sensors and Actuators B: Chemical</i> , 2018 , 257, 23-28	8.5	58	
1	994	Development of upconversion luminescent probe for ratiometric sensing and bioimaging of hydrogen sulfide. <i>ACS Applied Materials & Amp; Interfaces</i> , 2014 , 6, 11013-7	9.5	58	

1993	Microwave-enhanced multiple Suzuki couplings toward highly luminescent starburst monodisperse macromolecules. <i>Chemical Communications</i> , 2006 , 1959-61	5.8	58
1992	Hole-injection enhancement by copper phthalocyanine (CuPc) in blue polymer light-emitting diodes. <i>Journal of Applied Physics</i> , 2001 , 89, 2343-2350	2.5	58
1991	Design of highly efficient deep-blue organic afterglow through guest sensitization and matrices rigidification. <i>Nature Communications</i> , 2020 , 11, 4802	17.4	58
1990	Room-temperature electroluminescence from two-dimensional lead halide perovskites. <i>Applied Physics Letters</i> , 2016 , 109, 151101	3.4	58
1989	Using highly emissive and environmentally sensitive -carborane-functionalized metallophosphors to monitor mitochondrial polarity. <i>Chemical Science</i> , 2017 , 8, 5930-5940	9.4	57
1988	Facile one-pot synthesis of NiCo2O4 hollow spheres with controllable number of shells for high-performance supercapacitors. <i>Nano Research</i> , 2017 , 10, 405-414	10	57
1987	Interfacial engineering by using self-assembled monolayer in mesoporous perovskite solar cell. <i>RSC Advances</i> , 2015 , 5, 94290-94295	3.7	57
1986	Enhanced oxidation-resistant Cu-Ni core-shell nanowires: controllable one-pot synthesis and solution processing to transparent flexible heaters. <i>Nanoscale</i> , 2015 , 7, 16874-9	7.7	57
1985	Organic Room Temperature Phosphorescence Materials for Biomedical Applications. <i>Chemistry - an Asian Journal</i> , 2020 , 15, 947-957	4.5	57
1984	Intracellular Delivery of Native Proteins Facilitated by Cell-Penetrating Poly(disulfide)s. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 1532-1536	16.4	57
1983	Photophysical and Fluorescence Anisotropic Behavior of Polyfluorene Conformation Films. Journal of Physical Chemistry Letters, 2018 , 9, 364-372	6.4	57
1982	Simultaneous enhancement of magnetic and ferroelectric properties in Dy and Cr co-doped BiFeO3 nanoparticles. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 6399-405	3.6	57
1981	Manipulating the Stacking of Triplet Chromophores in the Crystal Form for Ultralong Organic Phosphorescence. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 14140-14145	16.4	57
1980	Cation-Modulated HER and OER Activities of Hierarchical VOOH Hollow Architectures for High-Efficiency and Stable Overall Water Splitting. <i>Small</i> , 2019 , 15, e1904688	11	57
1979	Carborane enhanced two-photon absorption of tribranched fluorophores for fluorescence microscopy imaging. <i>Chemical Communications</i> , 2013 , 49, 10638-40	5.8	57
1978	Rare Earth Ion-Doped Upconversion Nanocrystals: Synthesis and Surface Modification. <i>Nanomaterials</i> , 2014 , 5, 1-25	5.4	57
1977	Efficient and stable deep blue polymer light-emitting devices based on #phase poly(9,9-dioctylfluorene). <i>Applied Physics Letters</i> , 2013 , 103, 153301	3.4	57
1976	Fluorene and silafluorene conjugated copolymer: A new blue light-emitting polymer. <i>Synthetic Metals</i> , 2006 , 156, 1161-1167	3.6	57

1975	Domino-like multi-emissions across red and near infrared from solid-state 2-/2,6-aryl substituted BODIPY dyes. <i>Nature Communications</i> , 2018 , 9, 2688	17.4	57
1974	Solvent Engineering of the Precursor Solution toward Large-Area Production of Perovskite Solar Cells. <i>Advanced Materials</i> , 2021 , 33, e2005410	24	57
1973	Bromo-Substituted Diketopyrrolopyrrole Derivative with Specific Targeting and High Efficiency for Photodynamic Therapy. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 10737-42	9.5	57
1972	A Centimeter-Scale Inorganic Nanoparticle Superlattice Monolayer with Non-Close-Packing and its High Performance in Memory Devices. <i>Advanced Materials</i> , 2018 , 30, e1800595	24	57
1971	Unveiling the additive-assisted oriented growth of perovskite crystallite for high performance light-emitting diodes. <i>Nature Communications</i> , 2021 , 12, 5081	17.4	57
1970	Facile synthesis of gold nanomaterials with unusual crystal structures. <i>Nature Protocols</i> , 2017 , 12, 2367-	2138788	56
1969	Bidirectional optical signal transmission between two identical devices using perovskite diodes. <i>Nature Electronics</i> , 2020 , 3, 156-164	28.4	56
1968	Enhanced power conversion efficiency in iridium complex-based terpolymers for polymer solar cells. <i>Npj Flexible Electronics</i> , 2018 , 2,	10.7	56
1967	Tuning hexagonal NaYbF nanocrystals down to sub-10 nm for enhanced photon upconversion. <i>Nanoscale</i> , 2017 , 9, 13739-13746	7.7	56
1966	Highly efficient blue phosphorescent iridium(III) complexes with various ancillary ligands for partially solution-processed organic light-emitting diodes. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 930	⁄ 7.9 31₁	4 ⁵⁶
1965	More than Restriction of Twisted Intramolecular Charge Transfer: Three-Dimensional Expanded #-Shaped Cross-Molecular Packing for Emission Enhancement in Aggregates. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 12187-12195	3.8	56
1964	Exceptional blueshifted and enhanced aggregation-induced emission of conjugated asymmetric triazines and their applications in superamplified detection of explosives. <i>Chemistry - A European Journal</i> , 2012 , 18, 15655-61	4.8	56
1963	Synthesis of ConjugatedAcidic Block Copolymers by Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2002 , 35, 9875-9881	5.5	56
1962	New Series of Blue-Light-Emitting Polymers Constituted of 3-Alkylthiophenes and 1,4-Di(1,3,4-oxadiazolyl)phenylene. <i>Chemistry of Materials</i> , 1998 , 10, 3340-3345	9.6	56
1961	Large Planar EConjugated Porphyrin for Interfacial Engineering in p-i-n Perovskite Solar Cells. <i>ACS Applied Materials & Description of the Perovskite Solar Cells and Perovskite Solar</i>	9.5	56
1960	Carbon Necklace Incorporated Electroactive Reservoir Constructing Flexible Papers for Advanced Lithium-Ion Batteries. <i>Small</i> , 2018 , 14, 1702770	11	56
1959	Organic Nanoprobe Cocktails for Multilocal and Multicolor Fluorescence Imaging of Reactive Oxygen Species. <i>Advanced Functional Materials</i> , 2017 , 27, 1700493	15.6	55
1958	Gold Nanowire Chiral Ultrathin Films with Ultrastrong and Broadband Optical Activity. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 5055-5060	16.4	55

1957	Simultaneous Detection of Dihydroxybenzene Isomers with ZnO Nanorod/Carbon Cloth Electrodes. <i>ACS Applied Materials & Discourse amp; Interfaces</i> , 2017 , 9, 12453-12460	9.5	55
1956	Graphene oxide encapsulated gold nanoparticle based stable fibre optic sucrose sensor. <i>Sensors and Actuators B: Chemical</i> , 2015 , 221, 835-841	8.5	55
1955	A Solution-Processed Resonance Host for Highly Efficient Electrophosphorescent Devices with Extremely Low Efficiency Roll-off. <i>Advanced Materials</i> , 2015 , 27, 6939-44	24	55
1954	Aza-BODIPY-Based Nanomedicines in Cancer Phototheranostics. <i>ACS Applied Materials & amp;</i> Interfaces, 2020 , 12, 26914-26925	9.5	55
1953	Air-Stable Organic Radicals: New-Generation Materials for Flexible Electronics?. <i>Advanced Materials</i> , 2020 , 32, e1908015	24	55
1952	Anchoring Mn3O4 Nanoparticles on Oxygen Functionalized Carbon Nanotubes as Bifunctional Catalyst for Rechargeable Zinc-Air Battery. <i>ACS Applied Energy Materials</i> , 2018 , 1, 963-969	6.1	55
1951	A highly water-soluble triblock conjugated polymer for in vivo NIR-II imaging and photothermal therapy of cancer. <i>Polymer Chemistry</i> , 2018 , 9, 3118-3126	4.9	55
1950	Selective synthesis of TbMn(2)O(5) nanorods and TbMnO(3) micron crystals. <i>Journal of the American Chemical Society</i> , 2006 , 128, 14454-5	16.4	55
1949	Morphology control of perovskite light-emitting diodes by using amino acid self-assembled monolayers. <i>Applied Physics Letters</i> , 2016 , 108, 141102	3.4	55
1948	Flexible wire-shaped lithium-sulfur batteries with fibrous cathodes assembled via capillary action. <i>Nano Energy</i> , 2017 , 33, 325-333	17.1	54
1947	Utilizing Intramolecular Photoinduced Electron Transfer to Enhance Photothermal Tumor Treatment of Aza-BODIPY-Based Near-Infrared Nanoparticles. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 16299-16307	9.5	54
1946	Hydrogen-Bonded Organic Aromatic Frameworks for Ultralong Phosphorescence by Intralayer Interactions. <i>Angewandte Chemie</i> , 2018 , 130, 4069-4073	3.6	54
1945	Inkjet-Printed High-Performance Flexible Micro-Supercapacitors with Porous Nanofiber-Like Electrode Structures. <i>Small</i> , 2019 , 15, e1901830	11	54
1944	Rational design of phosphorescent chemodosimeter for reaction-based one- and two-photon and time-resolved luminescent imaging of biothiols in living cells. <i>Advanced Healthcare Materials</i> , 2014 , 3, 658-69	10.1	54
1943	Fabrication of ultralong hybrid microfibers from nanosheets of reduced graphene oxide and transition-metal dichalcogenides and their application as supercapacitors. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 12576-80	16.4	54
1942	Fabrication of Ultralong Hybrid Microfibers from Nanosheets of Reduced Graphene Oxide and Transition-Metal Dichalcogenides and their Application as Supercapacitors. <i>Angewandte Chemie</i> , 2014 , 126, 12784-12788	3.6	54
1941	Photocontrolled molecular structural transition and doping in graphene. ACS Nano, 2012, 6, 8878-86	16.7	54
1940	Variable Photophysical Properties of Phosphorescent Iridium(III) Complexes Triggered by closo- and nido-Carborane Substitution. <i>Angewandte Chemie</i> , 2013 , 125, 13676-13680	3.6	54

1939	Topological Arrangement of Fluorenyl-Substituted Carbazole Triads and Starbursts: Synthesis and Optoelectronic Properties. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 6961-6967	3.8	54
1938	Restriction of photoinduced twisted intramolecular charge transfer. <i>ChemPhysChem</i> , 2011 , 12, 397-404	3.2	54
1937	Solvent Effects on Supramolecular Networks Formed by Racemic Star-Shaped Oligofluorene Studied by Scanning Tunneling Microscopy. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 8649-8653	3.8	54
1936	Novel photoluminescent polymers containing oligothiophene and m-phenylene-1,3,4-oxadiazole moieties: synthesis and spectroscopic and electrochemical studies. <i>Journal of Organic Chemistry</i> , 2000 , 65, 3894-901	4.2	54
1935	Achieving Optimal Self-Adaptivity for Dynamic Tuning of Organic Semiconductors through Resonance Engineering. <i>Journal of the American Chemical Society</i> , 2016 , 138, 9655-62	16.4	53
1934	Precisely Controlling the Grain Sizes with an Ammonium Hypophosphite Additive for High-Performance Perovskite Solar Cells. <i>Advanced Functional Materials</i> , 2018 , 28, 1802320	15.6	53
1933	Synthesis, one- and two-photon photophysical and excited-state properties, and sensing application of a new phosphorescent dinuclear cationic iridium(III) complex. <i>Chemistry - A European Journal</i> , 2013 , 19, 621-9	4.8	53
1932	H-shaped oligofluorenes for highly air-stable and low-threshold non-doped deep blue lasing. Advanced Materials, 2014 , 26, 2937-42	24	53
1931	Spirocyclic aromatic hydrocarbon-based organic nanosheets for eco-friendly aqueous processed thin-film non-volatile memory devices. <i>Advanced Materials</i> , 2013 , 25, 3664-9	24	53
1930	Spirocyclic Aromatic Hydrocarbons (SAHs) and their Synthetic Methodologies. <i>Current Organic Chemistry</i> , 2010 , 14, 2169-2195	1.7	53
1929	Novel Light-Emitting Ternary Eu3+ Complexes Based on Multifunctional Bidentate Aryl Phosphine Oxide Derivatives: Tuning Photophysical and Electrochemical Properties toward Bright Electroluminescence. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 1674-1683	3.8	53
1928	Theoretical studies of the structural, electronic, and optical properties of phosphafluorenes. Journal of Physical Chemistry A, 2010 , 114, 3655-67	2.8	53
1927	Structural, electronic, and optical properties of 9-heterofluorenes: a quantum chemical study. Journal of Computational Chemistry, 2007 , 28, 2091-101	3.5	53
1926	A novel improved procedure for the synthesis of oxazoles. <i>Tetrahedron</i> , 1996 , 52, 10131-10136	2.4	53
1925	Recent developments of advanced micro-supercapacitors: design, fabrication and applications. <i>Npj Flexible Electronics</i> , 2020 , 4,	10.7	53
1924	Perovskite Solar Cells for Space Applications: Progress and Challenges. <i>Advanced Materials</i> , 2021 , 33, e2006545	24	53
1923	Stereoselectively Assembled Metal-Organic Framework (MOF) Host for Catalytic Synthesis of Carbon Hybrids for Alkaline-Metal-Ion Batteries. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 5307-5311	16.4	53
1922	Controlled Encapsulation of Functional Organic Molecules within Metal-Organic Frameworks: In Situ Crystalline Structure Transformation. <i>Advanced Materials</i> , 2017 , 29, 1606290	24	52

1921	Direct population of triplet excited states through singlet-triplet transition for visible-light excitable organic afterglow. <i>Chemical Science</i> , 2019 , 10, 5031-5038	9.4	52
1920	Hypotoxic and Rapidly Metabolic PEG-PCL-C3-ICG Nanoparticles for Fluorescence-Guided Photothermal/Photodynamic Therapy against OSCC. <i>ACS Applied Materials & Discourse (Materials & Discours)</i> , 31509-31518	9.5	52
1919	Carbon materials for enhancing charge transport in the advancements of perovskite solar cells. Journal of Power Sources, 2017 , 361, 259-275	8.9	52
1918	Phosphorescent platinum(II) complexes containing different <code>tiketonate</code> ligands: synthesis, tunable excited-state properties, and their application in bioimaging. <i>Journal of Materials Chemistry</i> , 2011 , 21, 13951		52
1917	Excellent BODIPY Dye Containing Dimesitylboryl Groups as PeT-Based Fluorescent Probes for Fluoride. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 19947-19954	3.8	52
1916	Novel h-shaped persistent architecture based on a dispiro building block system. <i>Organic Letters</i> , 2006 , 8, 1363-6	6.2	52
1915	Conductive Hydrogel-Based Electrodes and Electrolytes for Stretchable and Self-Healable Supercapacitors. <i>Advanced Functional Materials</i> , 2021 , 31, 2101303	15.6	52
1914	Triazatruxene-based materials for organic electronics and optoelectronics. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 10574-10587	7.1	52
1913	Ultrathin and large-sized vanadium oxide nanosheets mildly prepared at room temperature for high performance fiber-based supercapacitors. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 2483-2487	13	51
1912	Metal halide perovskites for resistive switching memory devices and artificial synapses. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 7476-7493	7.1	51
1911	Cationic Conjugated Polymer/Hyaluronan-Doxorubicin Complex for Sensitive Fluorescence Detection of Hyaluronidase and Tumor-Targeting Drug Delivery and Imaging. <i>ACS Applied Materials & ACS Applied & ACS Applied Materials & ACS Applied & ACS A</i>	9.5	51
1910	Fish Gelatin Based Triboelectric Nanogenerator for Harvesting Biomechanical Energy and Self-Powered Sensing of Human Physiological Signals. <i>ACS Applied Materials & Description</i> 12, 16442-16450	9.5	51
1909	Dual-Function Metal-Organic Framework-Based Wearable Fibers for Gas Probing and Energy Storage. <i>ACS Applied Materials & amp; Interfaces</i> , 2018 , 10, 2837-2842	9.5	51
1908	Photoluminescence properties of Eu(3+)-doped glaserite-type orthovanadates CsK(2)Gd[VO(4)](2). <i>Inorganic Chemistry</i> , 2014 , 53, 4161-8	5.1	51
1907	Formation of graphene oxide gel via the Estacked supramolecular self-assembly. <i>RSC Advances</i> , 2012 , 2, 12204	3.7	51
1906	High-Performance Foam-Shaped Strain Sensor Based on Carbon Nanotubes and TiCT MXene for the Monitoring of Human Activities. <i>ACS Nano</i> , 2021 , 15, 9690-9700	16.7	51
1905	Non-Conjugated Polymer as an Efficient Dopant-Free Hole-Transporting Material for Perovskite Solar Cells. <i>ChemSusChem</i> , 2017 , 10, 2578-2584	8.3	50
1904	Efficient and low-temperature processed perovskite solar cells based on a cross-linkable hybrid interlayer. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 18483-18491	13	50

1903	Microcavity top-emission perovskite light-emitting diodes. <i>Light: Science and Applications</i> , 2020 , 9, 89	16.7	50
1902	Controlling Intramolecular Conformation through Nonbonding Interaction for Soft-Conjugated Materials: Molecular Design and Optoelectronic Properties. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 3609-15	6.4	50
1901	Synthesis and Crystal Structure of Highly Strained [4]Cyclofluorene: Green-Emitting Fluorophore. <i>Organic Letters</i> , 2016 , 18, 172-5	6.2	50
1900	Promoting Singlet/triplet Exciton Transformation in Organic Optoelectronic Molecules: Role of Excited State Transition Configuration. <i>Scientific Reports</i> , 2017 , 7, 6225	4.9	50
1899	A hydrogen peroxide electrochemical sensor based on silver nanoparticles decorated three-dimensional graphene. <i>Applied Physics Letters</i> , 2014 , 104, 243704	3.4	50
1898	Manipulating the Ultralong Organic Phosphorescence of Small Molecular Crystals. <i>Chemistry - A European Journal</i> , 2020 , 26, 4437-4448	4.8	50
1897	Regulating Dendrite-Free Zinc Deposition by 3D Zincopilic Nitrogen-Doped Vertical Graphene for High-Performance Flexible Zn-Ion Batteries. <i>Advanced Functional Materials</i> , 2021 , 31, 2103922	15.6	50
1896	Alcohol-Mediated Resistance-Switching Behavior in Metal-Organic Framework-Based Electronic Devices. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 8884-8	16.4	50
1895	Bio-Erasable Intermolecular Donor Acceptor Interaction of Organic Semiconducting Nanoprobes for Activatable NIR-II Fluorescence Imaging. <i>Advanced Functional Materials</i> , 2019 , 29, 1807376	15.6	50
1894	Composition- and phase-controlled synthesis and applications of alloyed phase heterostructures of transition metal disulphides. <i>Nanoscale</i> , 2017 , 9, 5102-5109	7.7	49
1893	Sub-micron silicon/pyrolyzed carbon@natural graphite self-assembly composite anode material for lithium-ion batteries. <i>Chemical Engineering Journal</i> , 2017 , 313, 187-196	14.7	49
1892	TiO and Co Nanoparticle-Decorated Carbon Polyhedra as Efficient Sulfur Host for High-Performance Lithium-Sulfur Batteries. <i>Small</i> , 2019 , 15, e1804533	11	49
1891	Unique characteristics of 2D Ruddlesden Popper (2DRP) perovskite for future photovoltaic application. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 13860-13872	13	49
1890	Band Structure Engineering of Interfacial Semiconductors Based on Atomically Thin Lead Iodide Crystals. <i>Advanced Materials</i> , 2019 , 31, e1806562	24	49
1889	A-Site Cation Engineering of Metal Halide Perovskites: Version 3.0 of Efficient Tin-Based Lead-Free Perovskite Solar Cells. <i>Advanced Functional Materials</i> , 2020 , 30, 2000794	15.6	49
1888	Oxygen self-sufficient NIR-activatable liposomes for tumor hypoxia regulation and photodynamic therapy. <i>Chemical Science</i> , 2019 , 10, 9091-9098	9.4	49
1887	1300 nm absorption two-acceptor semiconducting polymer nanoparticles for NIR-II photoacoustic imaging system guided NIR-II photothermal therapy. <i>Chemical Communications</i> , 2019 , 55, 9487-9490	5.8	49
1886	Endogenous oxygen generating multifunctional theranostic nanoplatform for enhanced photodynamic-photothermal therapy and multimodal imaging. <i>Theranostics</i> , 2019 , 9, 7697-7713	12.1	49

1885	From Dark TICT State to Emissive quasi-TICT State: The AIE Mechanism of N-(3-(benzo[d]oxazol-2-yl)phenyl)-4-tert-butylbenzamide. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 2133-2141	3.8	49
1884	New trends in the optical and electronic applications of polymers containing transition-metal complexes. <i>Macromolecular Rapid Communications</i> , 2012 , 33, 461-80	4.8	49
1883	Highly Stretchable, Elastic, and Sensitive MXene-Based Hydrogel for Flexible Strain and Pressure Sensors. <i>Research</i> , 2020 , 2020, 2038560	7.8	49
1882	Influence of Eu and Sr co-substitution on multiferroic properties of BiFeO3. <i>Ceramics International</i> , 2016 , 42, 12838-12842	5.1	49
1881	On-demand regulation of photochromic behavior through various counterions for high-level security printing. <i>Science Advances</i> , 2020 , 6, eaaz2386	14.3	49
1880	High-Performance Nonvolatile Organic Field-Effect Transistor Memory Based on Organic Semiconductor Heterostructures of Pentacene/P13/Pentacene as Both Charge Transport and Trapping Layers. <i>Advanced Science</i> , 2017 , 4, 1700007	13.6	49
1879	Dual-emissive nanohybrid for ratiometric luminescence and lifetime imaging of intracellular hydrogen sulfide. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 5462-70	9.5	48
1878	Recent progress in small molecule fluorescent probes for nitroreductase. <i>Chinese Chemical Letters</i> , 2018 , 29, 1451-1455	8.1	48
1877	Access to Amide from Aldimine via Aerobic Oxidative Carbene Catalysis and LiCl as Cooperative Lewis Acid. <i>Organic Letters</i> , 2017 , 19, 3362-3365	6.2	48
1876	Preparation of graphene supported nickel nanoparticles and their application to methanol electrooxidation in alkaline medium. <i>New Journal of Chemistry</i> , 2012 , 36, 1108	3.6	48
1875	Effect of clay addition on the morphology and thermal behavior of polyamide 6. <i>Journal of Applied Polymer Science</i> , 2007 , 103, 1191-1199	2.9	48
1874	A Highly Selective, Colorimetric, and Fluorometric Multisignaling Chemosensor for Hg2+ Based on Poly(p-phenyleneethynylene) Containing Benzo[2,1,3]thiadiazole. <i>Macromolecular Rapid Communications</i> , 2008 , 29, 1212-1215	4.8	48
1873	A Series of Red-Light-Emitting Ionic Iridium Complexes: Structures, Excited State Properties, and Application in Electroluminescent Devices. <i>European Journal of Inorganic Chemistry</i> , 2008 , 2008, 2177-2	183	48
1872	Ultrastable Supramolecular Self-Encapsulated Wide-Bandgap Conjugated Polymers for Large-Area and Flexible Electroluminescent Devices. <i>Advanced Materials</i> , 2019 , 31, e1804811	24	48
1871	Enhancing singlet oxygen generation in semiconducting polymer nanoparticles through fluorescence resonance energy transfer for tumor treatment. <i>Chemical Science</i> , 2019 , 10, 5085-5094	9.4	47
1870	A Nontoxic Bifunctional (Anti)Solvent as Digestive-Ripening Agent for High-Performance Perovskite Solar Cells. <i>Advanced Materials</i> , 2020 , 32, e1907123	24	47
1869	Pyrene-Capped Conjugated Amorphous Starbursts: Synthesis, Characterization, and Stable Lasing Properties in Ambient Atmosphere. <i>Advanced Functional Materials</i> , 2015 , 25, 4617-4625	15.6	47
1868	Carbazole endcapped heterofluorenes as host materials: theoretical study of their structural, electronic, and optical properties. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 15448-58	3.6	47

(2016-2007)

1867	Star-shaped oligofluorenes end-capped with carboxylic groups: syntheses and self-assembly at the liquid-solid interface. <i>ACS Nano</i> , 2007 , 1, 160-7	16.7	47	
1866	Demonstration of High-Resolution Capability of Chemical Force Titration via Study of Acid/Base Properties of a Patterned Self-Assembled Monolayer. <i>Langmuir</i> , 2000 , 16, 517-521	4	47	
1865	Nitric oxide activatable photosensitizer accompanying extremely elevated two-photon absorption for efficient fluorescence imaging and photodynamic therapy. <i>Chemical Science</i> , 2018 , 9, 999-1005	9.4	47	
1864	Type I Photosensitizers Revitalizing Photodynamic Oncotherapy. <i>Small</i> , 2021 , 17, e2006742	11	47	
1863	Nitric Oxide-Releasing Polymeric Materials for Antimicrobial Applications: A Review. <i>Antioxidants</i> , 2019 , 8,	7.1	47	
1862	Oxygen vacancy enriched hollow cobaltosic oxide frames with ultrathin walls for efficient energy storage and biosensing. <i>Nanoscale</i> , 2018 , 10, 21006-21012	7.7	47	
1861	Manipulating Nonradiative Decay Channel by Intermolecular Charge Transfer for Exceptionally Improved Photothermal Conversion. <i>ACS Nano</i> , 2019 , 13, 12006-12014	16.7	46	
1860	Polarity-assisted formation of hollow-frame sheathed nitrogen-doped nanofibrous carbon for supercapacitors. <i>Nanoscale</i> , 2019 , 11, 2492-2500	7.7	46	
1859	Room temperature synthesis of cobalt-manganese-nickel oxalates micropolyhedrons for high-performance flexible electrochemical energy storage device. <i>Scientific Reports</i> , 2015 , 5, 8536	4.9	46	
1858	Nano-black phosphorus for combined cancer phototherapy: recent advances and prospects. <i>Nanotechnology</i> , 2018 , 29, 222001	3.4	46	
1857	Diarylfluorene-based nano-molecules as dopant-free hole-transporting materials without post-treatment process for flexible p-i-n type perovskite solar cells. <i>Nano Energy,</i> 2018 , 46, 241-248	17.1	46	
1856	Templating C60 on MoS2 Nanosheets for 2D Hybrid van der Waals pl Nanoheterojunctions. <i>Chemistry of Materials</i> , 2016 , 28, 4300-4306	9.6	46	
1855	Transient and flexible polymer memristors utilizing full-solution processed polymer nanocomposites. <i>Nanoscale</i> , 2018 , 10, 14824-14829	7.7	46	
1854	Monodispersed brush-like conjugated polyelectrolyte nanoparticles with efficient and visualized siRNA delivery for gene silencing. <i>Biomacromolecules</i> , 2013 , 14, 3643-52	6.9	46	
1853	Highly Concentrated, Ultrathin Nickel Hydroxide Nanosheet Ink for Wearable Energy Storage Devices. <i>Advanced Materials</i> , 2017 , 29, 1703455	24	46	
1852	High performance one-for-all phototheranostics: NIR-II fluorescence imaging guided mitochondria-targeting phototherapy with a single-dose injection and 808 nm laser irradiation. <i>Biomaterials</i> , 2020 , 231, 119671	15.6	46	
1851	Tunable Electrochromic Luminescence of Iridium(III) Complexes for Information Self-Encryption and Anti-Counterfeiting. <i>Advanced Optical Materials</i> , 2016 , 4, 1167-1173	8.1	46	
1850	PVP assisted hydrothermal fabrication and morphology-controllable fabrication of BiFeO 3 uniform nanostructures with enhanced photocatalytic activities. <i>Journal of Alloys and Compounds</i> , 2016 , 677, 288-293	5.7	46	

1849	Peripheral Amplification of Multi-Resonance Induced Thermally Activated Delayed Fluorescence for Highly Efficient OLEDs. <i>Angewandte Chemie</i> , 2018 , 130, 11486-11490	3.6	46	
1848	Highly efficient thienylquinoline-based phosphorescent iridium(III) complexes for red and white organic light-emitting diodes. <i>Organic Electronics</i> , 2017 , 45, 293-301	3.5	45	
1847	Stimuli-Responsive Reversible Switching of Intersystem Crossing in Pure Organic Material for Smart Photodynamic Therapy. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 11105-11111	16.4	45	
1846	Sustainable and Transparent Fish Gelatin Films for Flexible Electroluminescent Devices. <i>ACS Nano</i> , 2020 , 14, 3876-3884	16.7	45	
1845	Metallic Sandwiched-Aerogel Hybrids Enabling Flexible and Stretchable Intelligent Sensor. <i>Nano Letters</i> , 2020 , 20, 3449-3458	11.5	45	
1844	Reduced Efficiency Roll-Off and Enhanced Stability in Perovskite Light-Emitting Diodes with Multiple Quantum Wells. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 2038-2042	6.4	45	
1843	Design and synthesis of conjugated polymers containing Pt(II) complexes in the side-chain and their application in polymer memory devices. <i>Journal of Materials Chemistry</i> , 2012 , 22, 9576		45	
1842	Deposition of Fluoropolymer Films on Si(100) Surfaces by Rf Magnetron Sputtering of Poly(tetrafluoroethylene). <i>Langmuir</i> , 2002 , 18, 6373-6380	4	45	
1841	Luminescent manganese(II) complexes: Synthesis, properties and optoelectronic applications. Coordination Chemistry Reviews, 2020 , 416, 213331	23.2	45	
1840	Ratiometric Luminescent Sensor of Picric Acid Based on the Dual-Emission Mixed-Lanthanide Coordination Polymer. <i>ACS Applied Materials & District Materials</i> (2018) 10, 44109-44115	9.5	45	
1839	Sodium-Induced Reordering of Atomic Stacks in Black Phosphorus. <i>Chemistry of Materials</i> , 2017 , 29, 13	5 6 9. 6 35	644	
1838	Synthesis of porous CoMoO nanorods as a bifunctional cathode catalyst for a Li-O battery and superior anode for a Li-ion battery. <i>Nanoscale</i> , 2017 , 9, 3898-3904	7.7	44	
1837	Non-viral nanocarriers for intracellular delivery of microRNA therapeutics. <i>Journal of Materials Chemistry B</i> , 2019 , 7, 1209-1225	7.3	44	
1836	A unique white electroluminescent one-dimensional europium(III) coordination polymer. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 1893-1903	7.1	44	
1835	Graphene oxide-assisted nucleic acids assays using conjugated polyelectrolytes-based fluorescent signal transduction. <i>Analytical Chemistry</i> , 2015 , 87, 3877-83	7.8	44	
1834	Ultrasensitive THz IPlasmonics gaseous sensor using doped graphene. <i>Sensors and Actuators B: Chemical</i> , 2016 , 227, 291-295	8.5	44	
1833	Carboranes tuning the phosphorescence of iridium tetrazolate complexes. <i>Chemistry - A European Journal</i> , 2014 , 20, 16550-7	4.8	44	
1832	Tricyclometalated iridium complexes as highly stable photosensitizers for light-induced hydrogen evolution. <i>Chemistry - A European Journal</i> , 2013 , 19, 6340-9	4.8	44	

(2019-2007)

1831	Econjugated Chelating Polymers with a Charged Iridium Complex in the Backbones: Toward Saturated-Red Phosphorescent Polymer Light-Emitting Diodes. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 1166-1175	3.8	44	
1830	Ultra-sharp #e2O3 nanoflakes: growth mechanism and field-emission. <i>Applied Physics A: Materials Science and Processing</i> , 2007 , 89, 115-119	2.6	44	
1829	Wide-range lifetime-tunable and responsive ultralong organic phosphorescent multi-host/guest system. <i>Nature Communications</i> , 2021 , 12, 3522	17.4	44	
1828	From Graphite to Graphene Oxide and Graphene Oxide Quantum Dots. <i>Small</i> , 2017 , 13, 1601001	11	43	
1827	A Simple Strategy towards Highly Conductive Silver-Nanowire Inks for Screen-Printed Flexible Transparent Conductive Films and Wearable Energy-Storage Devices. <i>Advanced Materials Technologies</i> , 2019 , 4, 1900196	6.8	43	
1826	Design and Synthesis of Biocompatible, Hemocompatible, and Highly Selective Antimicrobial Cationic Peptidopolysaccharides via Click Chemistry. <i>Biomacromolecules</i> , 2019 , 20, 2230-2240	6.9	43	
1825	A Highly Efficient Red Metal-free Organic Phosphor for Time-Resolved Luminescence Imaging and Photodynamic Therapy. <i>ACS Applied Materials & Description of the State of the S</i>	9.5	43	
1824	Facial Control Intramolecular Charge Transfer of Quinoid Conjugated Polymers for Efficient in Vivo NIR-II Imaging. <i>ACS Applied Materials & Discrete Materials</i> (1) 11, 16311-16319	9.5	43	
1823	Room-Temperature Phosphorescence in Metal-Free Organic Materials. <i>Annalen Der Physik</i> , 2019 , 531, 1800482	2.6	43	
1822	Cu,N-Codoped Carbon Nanodisks with Biomimic Stomata-Like Interconnected Hierarchical Porous Topology as Efficient Electrocatalyst for Oxygen Reduction Reaction. <i>Small</i> , 2019 , 15, e1902410	11	43	
1821	Hyper-branched phosphorescent conjugated polyelectrolytes for time-resolved heparin sensing. <i>ACS Applied Materials & District Material</i>	9.5	43	
1820	Dye-conjugated upconversion nanoparticles for ratiometric imaging of intracellular pH values. Journal of Materials Chemistry C, 2015 , 3, 6616-6620	7.1	43	
1819	Fabrication of high-quality graphene oxide nanoscrolls and application in supercapacitor. <i>Nanoscale Research Letters</i> , 2015 , 10, 192	5	43	
1818	The electrical properties of graphene modified by bromophenyl groups derived from a diazonium compound. <i>Carbon</i> , 2012 , 50, 1517-1522	10.4	43	
1817	Monochromic Red-Emitting Nonconjugated Copolymers Containing Double-Carrier-Trapping Phosphine Oxide Eu3+ Segments: Toward Bright and Efficient Electroluminescence. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 15627-15638	3.8	43	
1816	Case study on a rare effect: the experimental and theoretical analysis of a manganese(III) spin-crossover system. <i>Inorganic Chemistry</i> , 2010 , 49, 9839-51	5.1	43	
1815	Circularly polarized luminescence from organic micro-/nano-structures. <i>Light: Science and Applications</i> , 2021 , 10, 76	16.7	43	
1814	Defect Passivation for Red Perovskite Light-Emitting Diodes with Improved Brightness and Stability. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 380-385	6.4	43	

1813	Tin-Based Multiple Quantum Well Perovskites for Light-Emitting Diodes with Improved Stability. Journal of Physical Chemistry Letters, 2019 , 10, 453-459	6.4	43
1812	Smart Design of Nanomaterials for Mitochondria-Targeted Nanotherapeutics. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 2232-2256	16.4	43
1811	Flexible Transparent Supercapacitors: Materials and Devices. <i>Advanced Functional Materials</i> , 2021 , 31, 2009136	15.6	43
1810	Reversible Ultralong Organic Phosphorescence for Visual and Selective Chloroform Detection. <i>ACS Applied Materials & Detection (No. 1988)</i> , 10, 33730-33736	9.5	43
1809	Efficient recycling of trapped energies for dual-emission in Mn-doped perovskite nanocrystals. <i>Nano Energy</i> , 2018 , 51, 704-710	17.1	43
1808	Confining isolated chromophores for highly efficient blue phosphorescence. <i>Nature Materials</i> , 2021 , 20, 1539-1544	27	43
1807	A Series of Lanthanide-Based Metal-Organic Frameworks: Synthesis, Structures, and Multicolor Tuning of Single Component. <i>Inorganic Chemistry</i> , 2017 , 56, 2345-2353	5.1	42
1806	Heterostructured TiO Spheres with Tunable Interiors and Shells toward Improved Packing Density and Pseudocapacitive Sodium Storage. <i>Advanced Materials</i> , 2019 , 31, e1904589	24	42
1805	A high-voltage aqueous lithium ion capacitor with high energy density from an alkalineBeutral electrolyte. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 4110-4118	13	42
1804	Controllable co-assembly of organic micro/nano heterostructures from fluorescent and phosphorescent molecules for dual anti-counterfeiting. <i>Materials Horizons</i> , 2019 , 6, 984-989	14.4	42
1803	A low-cost phenylbenzoimidazole containing electron transport material for efficient green phosphorescent and thermally activated delayed fluorescent OLEDs. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 5533-5540	7.1	42
1802	Solar energy conversion and utilization: Towards the emerging photo-electrochemical devices based on perovskite photovoltaics. <i>Chemical Engineering Journal</i> , 2020 , 393, 124766	14.7	42
1801	Site-Selective Catalysis of a Multifunctional Linear Molecule: The Steric Hindrance of Metal-Organic Framework Channels. <i>Advanced Materials</i> , 2018 , 30, e1800643	24	42
1800	Mussel-Inspired Hydrogel with Potent Contact-Active Antimicrobial and Wound Healing Promoting Activities <i>ACS Applied Bio Materials</i> , 2019 , 2, 3329-3340	4.1	42
1799	One Dimensional Silver-based Nanomaterials: Preparations and Electrochemical Applications. <i>Small</i> , 2017 , 13, 1701091	11	42
1798	Autophagy-sensitized cytotoxicity of quantum dots in PC12 cells. <i>Advanced Healthcare Materials</i> , 2014 , 3, 354-9	10.1	42
1797	Nanostructured titanate with different metal ions on the surface of metallic titanium: a facile approach for regulation of rBMSCs fate on titanium implants. <i>Small</i> , 2014 , 10, 3169-80	11	42
1796	An ultrasensitive label-free biosensor for assaying of sequence-specific DNA-binding protein based on amplifying fluorescent conjugated polymer. <i>Biosensors and Bioelectronics</i> , 2013 , 41, 218-24	11.8	42

1795	Hindrance-Functionalized Estacked Polymer Host Materials of the Cardo-Type Carbazole Eluorene Hybrid for Solution-Processable Blue Electrophosphorescent Devices. <i>Macromolecules</i> , 2011 , 44, 4589-4	<i>§</i> 95	42
1794	Synthesis, morphology and photophysics of novel hybrid organicIhorganic polyhedral oligomeric silsesquioxane-tethered poly(fluorenyleneethynylene)s. <i>Polymer</i> , 2006 , 47, 1970-1978	3.9	42
1793	In situ photoluminescence investigation of doped Alq. <i>Applied Physics Letters</i> , 2002 , 80, 4846-4848	3.4	42
1792	Dual-ligand and hard-soft-acid-base strategies to optimize metal-organic framework nanocrystals for stable electrochemical cycling performance. <i>National Science Review</i> ,	10.8	42
1791	Designing Highly Efficient Phosphorescent Neutral Tetrahedral Manganese(II) Complexes for Organic Light-Emitting Diodes. <i>Advanced Optical Materials</i> , 2019 , 7, 1801160	8.1	42
1790	Energy-level engineered hollow N-doped NiS1.03 for ZnAir batteries. <i>Energy Storage Materials</i> , 2020 , 25, 202-209	19.4	42
1789	WS moir'superlattices derived from mechanical flexibility for hydrogen evolution reaction. <i>Nature Communications</i> , 2021 , 12, 5070	17.4	42
1788	Lead-Free Perovskite Materials for Solar Cells. <i>Nano-Micro Letters</i> , 2021 , 13, 62	19.5	42
1787	Self-assembling sulfonated graphene/polyaniline nanocomposite paper for high performance supercapacitor. <i>Synthetic Metals</i> , 2015 , 199, 79-86	3.6	41
1786	Dopant-free hole transport materials based on alkyl-substituted indacenodithiophene for planar perovskite solar cells. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 4706-4713	7.1	41
1785	Preparation and applications of novel composites composed of metal-organic frameworks and two-dimensional materials. <i>Chemical Communications</i> , 2016 , 52, 1555-62	5.8	41
1784	Tumor-targeting, enzyme-activated nanoparticles for simultaneous cancer diagnosis and photodynamic therapy. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 113-120	7.3	41
1783	Breaking the Efficiency Limit of Fluorescent OLEDs by Hybridized Local and Charge-Transfer Host Materials. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 5240-5245	6.4	41
1782	Carbene-catalyzed aerobic oxidation of isoquinolinium salts: efficient synthesis of isoquinolinones. <i>Green Chemistry</i> , 2018 , 20, 3302-3307	10	41
1781	Plasmonic nanobiosensor based on hairpin DNA for detection of trace oligonucleotides biomarker in cancers. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 2459-66	9.5	41
1780	An S = 3 cyanide-bridged tetranuclear Fe(III)(2)Ni(II)(2) square that exhibits slow relaxation of magnetization: synthesis, structure and magnetic properties. <i>Dalton Transactions</i> , 2010 , 39, 5500-3	4.3	41
1779	Synthesis and magnetic property of submicron Bi2Fe4O9. <i>Journal of Crystal Growth</i> , 2006 , 294, 469-473	1.6	41
1778	An efficient electroluminescent (2,2?-bipyridine mono N-oxide) europium(III)		41

1777	Identifying the origin of the Voc deficit of kesterite solar cells from the two grain growth mechanisms induced by Sn2+ and Sn4+ precursors in DMSO solution. <i>Energy and Environmental Science</i> , 2021 , 14, 2369-2380	35.4	41
1776	Highly Stable and Multifunctional Aza-BODIPY-Based Phototherapeutic Agent for Anticancer Treatment. <i>ACS Applied Materials & Acs Acc Acc Acc Acc Acc Acc Acc Acc Acc</i>	9.5	41
1775	Topochemical Synthesis of 2D Carbon Hybrids through Self-Boosting Catalytic Carbonization of a Metal-Polymer Framework. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 16436-16441	16.4	41
1774	NIR-Absorbing Dye Functionalized Supramolecular Vesicles for Chemo-photothermal Synergistic Therapy. <i>ACS Applied Bio Materials</i> , 2018 , 1, 70-78	4.1	41
1773	Small-molecule diketopyrrolopyrrole-based therapeutic nanoparticles for photoacoustic imaging-guided photothermal therapy. <i>Nano Research</i> , 2017 , 10, 794-801	10	40
1772	Eco-friendly direct (hetero)-arylation polymerization: scope and limitation. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 29-40	7.1	40
1771	Triazine-phosphine oxide electron transporter for ultralow-voltage-driven sky blue PHOLEDs. Journal of Materials Chemistry C, 2015 , 3, 4890-4902	7.1	40
1770	Access to Enantioenriched Organosilanes from Enals and 野ilyl Enones: Carbene Organocatalysis. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 4594-4598	16.4	40
1769	Phosphorescent iridium(iii) complexes: a versatile tool for biosensing and photodynamic therapy. <i>Dalton Transactions</i> , 2018 , 47, 7628-7633	4.3	40
1768	Star-Shaped Single-Polymer Systems with Simultaneous RGB Emission: Design, Synthesis, Saturated White Electroluminescence, and Amplified Spontaneous Emission. <i>Macromolecules</i> , 2016 , 49, 2549-255	8 ^{5.5}	40
1767	Patterning Islandlike MnO Arrays by Breath-Figure Templates for Flexible Transparent Supercapacitors. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 27001-27008	9.5	40
1766	Dual-Emissive Phosphorescent Polymer Probe for Accurate Temperature Sensing in Living Cells and Zebrafish Using Ratiometric and Phosphorescence Lifetime Imaging Microscopy. <i>ACS Applied Materials & District Americal Security (No. 17542-17550)</i>	9.5	40
1765	A tumor-mitochondria dual targeted aza-BODIPY-based nanotheranostic agent for multimodal imaging-guided phototherapy. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 4522-4530	7.3	40
1764	Enhancement of the performance of organic solar cells by electrospray deposition with optimal solvent system. <i>Solar Energy Materials and Solar Cells</i> , 2014 , 121, 119-125	6.4	40
1763	Individual Au-Nanocube Based Plasmonic Nanoprobe for Cancer Relevant MicroRNA Biomarker Detection. <i>ACS Sensors</i> , 2017 , 2, 1435-1440	9.2	40
1762	Dual-emissive Polymer Dots for Rapid Detection of Fluoride in Pure Water and Biological Systems with Improved Reliability and Accuracy. <i>Scientific Reports</i> , 2015 , 5, 16420	4.9	40
1761	Controllable growth of well-defined regular multiporphyrin array nanocrystals at the water-chloroform interface. <i>Langmuir</i> , 2005 , 21, 5079-84	4	40
1760	A Novel Transparent Vanadate Glass for Use in Fiber Optics. <i>Advanced Materials</i> , 2005 , 17, 857-859	24	40

1759	One-Dimensional (NH=CINH3)3PbI5 Perovskite for Ultralow Power Consumption Resistive Memory. <i>Research</i> , 2021 , 2021, 1-9	7.8	40
1758	Control of Barrier Width in Perovskite Multiple Quantum Wells for High Performance Green Light E mitting Diodes. <i>Advanced Optical Materials</i> , 2019 , 7, 1801575	8.1	40
1757	Phosphorescent Starburst Pt(II) Porphyrins as Bifunctional Therapeutic Agents for Tumor Hypoxia Imaging and Photodynamic Therapy. <i>ACS Applied Materials & amp; Interfaces</i> , 2018 , 10, 19523-19533	9.5	40
1756	Thermally populated "bright" states for wide-range and high temperature sensing in air. <i>Chemical Communications</i> , 2017 , 53, 5702-5705	5.8	39
1755	Fiber-based all-solid-state asymmetric supercapacitors based on Co3O4@MnO2 core/shell nanowire arrays. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 22939-22944	13	39
1754	A mitochondria-targeted two-photon fluorogenic probe for the dual-imaging of viscosity and H2O2 levels in Parkinson's disease models. <i>Journal of Materials Chemistry B</i> , 2019 , 7, 4243-4251	7-3	39
1753	Achieving a high-performance Prussian blue analogue cathode with an ultra-stable redox reaction for ammonium ion storage. <i>Nanoscale Horizons</i> , 2019 , 4, 991-998	10.8	39
1752	Low-temperature molten salt synthesis of MoS@CoS heterostructures for efficient hydrogen evolution reaction. <i>Chemical Communications</i> , 2020 , 56, 5548-5551	5.8	39
1751	Holey nickel hydroxide nanosheets for wearable solid-state fiber-supercapacitors. <i>Nanoscale</i> , 2018 , 10, 5442-5448	7.7	39
1750	Stereoselective photoredox ring-opening polymerization of O-carboxyanhydrides. <i>Nature Communications</i> , 2018 , 9, 1559	17.4	39
1749	Graphene quantum dots modified with adenine for efficient two-photon bioimaging and white light-activated antibacteria. <i>Applied Surface Science</i> , 2018 , 434, 155-162	6.7	39
1748	Dynamic Ultralong Organic Phosphorescence by Photoactivation. <i>Angewandte Chemie</i> , 2018 , 130, 8561-	-8567	39
1747	Homogeneous near-infrared emissive polymeric nanoparticles based on amphiphilic diblock copolymers with perylene diimide and PEG pendants: self-assembly behavior and cellular imaging application. <i>Polymer Chemistry</i> , 2014 , 5, 1372-1380	4.9	39
1746	Target-induced conjunction of split aptamer fragments and assembly with a water-soluble conjugated polymer for improved protein detection. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 3406-12	9.5	39
1745	Organic radical functionalized graphene as a superior anode material for lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 9164	13	39
1744	Water-Soluble Iridium(III)-Containing Conjugated Polyelectrolytes with Weakened Energy Transfer Properties for Multicolor Protein Sensing Applications. <i>Macromolecules</i> , 2011 , 44, 8763-8770	5.5	39
1743	Room-Temperature NH 3 Gas Sensor Based on Hydrothermally Grown ZnO Nanorods. <i>Chinese Physics Letters</i> , 2011 , 28, 080702	1.8	39
1742	Deep-blue light emitting triazatruxene core/oligo-fluorene branch dendrimers for electroluminescence and optical gain applications. <i>Journal Physics D: Applied Physics</i> , 2007 , 40, 1896-190)}	39

1741	Stimuli-Responsive Deep-Blue Organic Ultralong Phosphorescence with Lifetime over 5 s for Reversible Water-Jet Anti-Counterfeiting Printing. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 17094-17101	16.4	39
1740	Paper-based fluorogenic devices for in vitro diagnostics. <i>Biosensors and Bioelectronics</i> , 2018 , 102, 256-2	2 66 1.8	39
1739	Realization of vertical metal semiconductor heterostructures via solution phase epitaxy. <i>Nature Communications</i> , 2018 , 9, 3611	17.4	39
1738	Dopant-Free Hole-Transport Materials Based on Methoxytriphenylamine-Substituted Indacenodithienothiophene for Solution-Processed Perovskite Solar Cells. <i>ChemSusChem</i> , 2017 , 10, 28	33 ⁸ -283	8 ³⁸
1737	A single wire as all-inclusive fully functional supercapacitor. <i>Nano Energy</i> , 2017 , 32, 201-208	17.1	38
1736	Inner salt-shaped small molecular photosensitizer with extremely enhanced two-photon absorption for mitochondrial-targeted photodynamic therapy. <i>Chemical Communications</i> , 2017 , 53, 1680-1683	5.8	38
1735	Fabrication of Flexible Transparent Electrode with Enhanced Conductivity from Hierarchical Metal Grids. <i>ACS Applied Materials & Acs Applied & Acs Applied</i>	9.5	38
1734	Highly Efficient Photocatalytic Degradation Performance of CsPb(Br1\(\mathbb{R}\)Clx)3-Au Nanoheterostructures. ACS Sustainable Chemistry and Engineering, 2019 , 7, 5152-5156	8.3	38
1733	Well-defined star-shaped conjugated macroelectrolytes as efficient electron-collecting interlayer for inverted polymer solar cells. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 452-9	9.5	38
1732	FeO/SnSSe Hexagonal Nanoplates as Lithium-Ion Batteries Anode. <i>ACS Applied Materials & amp; Interfaces</i> , 2018 , 10, 12722-12730	9.5	38
1731	Graphene as an intermediary for enhancing the electron transfer rate: A free-standing Ni3S2@graphene@Co9S8 electrocatalytic electrode for oxygen evolution reaction. <i>Nano Research</i> , 2018 , 11, 1389-1398	10	38
1730	The effect of porous structure of PMMA tunneling dielectric layer on the performance of nonvolatile floating-gate organic field-effect transistor memory devices. <i>Organic Electronics</i> , 2016 , 33, 95-101	3.5	38
1729	Super air stable quasi-2D organic-inorganic hybrid perovskites for visible light-emitting diodes. <i>Optics Express</i> , 2018 , 26, A66-A74	3.3	38
1728	Efficient synthesis of Eextended phenazasilines for optical and electronic applications. <i>Chemical Communications</i> , 2014 , 50, 15760-3	5.8	38
1727	Cationic conjugated polymer/fluoresceinamine-hyaluronan complex for sensitive fluorescence detection of CD44 and tumor-targeted cell imaging. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 19144-53	9.5	38
1726	Graphene-based three-dimensional hierarchical sandwich-type architecture for high performance supercapacitors. <i>RSC Advances</i> , 2014 , 4, 8466-8471	3.7	38
1725	Facile synthesis of Au-SnO2 hybrid nanospheres with enhanced photoelectrochemical biosensing performance. <i>Nanoscale</i> , 2014 , 6, 6315-21	7.7	38
1724	Perylene Diimide-Grafted Polymeric Nanoparticles Chelated with Gd for Photoacoustic/T-Weighted Magnetic Resonance Imaging-Guided Photothermal Therapy. ACS Applied Materials & Company (Interfaces, 2017, p. 2015), 2016.	9.5	38

(2016-2015)

1723	Synthesis of stable heterogeneous catalysts by supporting carbon-stabilized palladium nanoparticles on MOFs. <i>Nanoscale</i> , 2015 , 7, 8720-4	7.7	38
1722	Conjugated polymers with cationic iridium(III) complexes in the side-chain for flash memory devices utilizing switchable through-space charge transfer. <i>Journal of Materials Chemistry</i> , 2012 , 22, 22964		38
1721	Anomalous optical properties and electron-phonon coupling enhancement in Fe2O3 nanoparticles coated with a layer of stearates. <i>Journal of Physics and Chemistry of Solids</i> , 1997 , 58, 1315-1320	3.9	38
1720	An effective strategy to tune supramolecular interaction via a spiro-bridged spacer in oligothiophene-S,S-dioxides and their anomalous photoluminescent behavior. <i>Organic Letters</i> , 2007 , 9, 1619-22	6.2	38
1719	Electroless Metallization of Glass Surfaces Functionalized by Silanization and Graft Polymerization of Aniline. <i>Langmuir</i> , 2001 , 17, 7425-7432	4	38
1718	Self-templated synthesis of uniform hollow spheres based on highly conjugated three-dimensional covalent organic frameworks. <i>Nature Communications</i> , 2020 , 11, 5561	17.4	38
1717	Efficient and bright warm-white electroluminescence from lead-free metal halides. <i>Nature Communications</i> , 2021 , 12, 1421	17.4	38
1716	Ultrastable FeCo Bifunctional Electrocatalyst on Se-Doped CNTs for Liquid and Flexible All-Solid-State Rechargeable Zn-Air Batteries. <i>Nano Letters</i> , 2021 , 21, 2255-2264	11.5	38
1715	Comparative studies of pure, Ca-doped, Co-doped and co-doped BiFeO3 nanoparticles. <i>Ceramics International</i> , 2016 , 42, 537-544	5.1	37
1714	Luminescence Color Tuning by Regulating Electrostatic Interaction in Light-Emitting Devices and Two-Photon Excited Information Decryption. <i>Inorganic Chemistry</i> , 2017 , 56, 2409-2416	5.1	37
1713	Molecular-Level Design of Hierarchically Porous Carbons Codoped with Nitrogen and Phosphorus Capable of In Situ Self-Activation for Sustainable Energy Systems. <i>Small</i> , 2017 , 13, 1602010	11	37
1712	Photothermal-triggered release of singlet oxygen from an endoperoxide-containing polymeric carrier for killing cancer cells. <i>Materials Horizons</i> , 2017 , 4, 1185-1189	14.4	37
1711	Organic semiconducting nanoprobe with redox-activatable NIR-II fluorescence for in vivo real-time monitoring of drug toxicity. <i>Chemical Communications</i> , 2018 , 55, 27-30	5.8	37
1710	Signal-Enhanced Detection of Multiplexed Cardiac Biomarkers by a Paper-Based Fluorogenic Immunodevice Integrated with Zinc Oxide Nanowires. <i>Analytical Chemistry</i> , 2019 , 91, 9300-9307	7.8	37
1709	Organocatalytic asymmetric N-sulfonyl amide C-N bond activation to access axially chiral biaryl amino acids. <i>Nature Communications</i> , 2020 , 11, 946	17.4	37
1708	Ru nanodendrites composed of ultrathin fcc/hcp nanoblades for the hydrogen evolution reaction in alkaline solutions. <i>Chemical Communications</i> , 2018 , 54, 4613-4616	5.8	37
1707	Random terpolymer with a cost-effective monomer and comparable efficiency to PTB7-Th for bulk-heterojunction polymer solar cells. <i>Polymer Chemistry</i> , 2016 , 7, 926-932	4.9	37
1706	New AIE-active pyrimidine-based boronfluoride complexes with high solid-state emission and reversible mechanochromism luminescence behavior. <i>Dalton Transactions</i> , 2016 , 45, 7278-84	4.3	37

1705	Effect of Eu, Mn co-doping on structural, optical and magnetic properties of BiFeO 3 nanoparticles. <i>Materials Science in Semiconductor Processing</i> , 2017 , 57, 178-184	4.3	37
1704	A 3-dimensional spiro-functionalized platinum(II) complex to suppress intermolecular Hand PtIIIPt supramolecular interactions for a high-performance electrophosphorescent device. <i>Chemical Communications</i> , 2012 , 48, 3854-6	5.8	37
1703	Spiro-functionalized Ligand with Supramolecular Steric Hindrance to Control Interaction in the Iridium Complex for High-Performance Electrophosphorescent Devices. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 272-276	6.4	37
1702	Pyrene functioned diarylfluorenes as efficient solution processable light emitting molecular glass. Organic Electronics, 2009 , 10, 256-265	3.5	37
1701	2,3,7,8,12,13-Hexaaryltruxenes: an ortho-substituted multiarm design and microwave-accelerated synthesis toward starburst macromolecular materials with well-defined pi delocalization. <i>Chemistry - A European Journal</i> , 2010 , 16, 8471-9	4.8	37
1700	Imidazole derivatives: Thermally stable organic luminescence materials. <i>Materials Chemistry and Physics</i> , 2006 , 100, 460-463	4.4	37
1699	Antibacterial and hydroxyapatite-forming coating for biomedical implants based on polypeptide-functionalized titania nanospikes. <i>Biomaterials Science</i> , 2019 , 8, 278-289	7.4	37
1698	Controllable synthesis of triangular Ni(HCO3)2 nanosheets for supercapacitor. <i>Nano Research</i> , 2016 , 9, 1358-1365	10	37
1697	Sn4+ precursor enables 12.4% efficient kesterite solar cell from DMSO solution with open circuit voltage deficit below 0.30 V. <i>Science China Materials</i> , 2021 , 64, 52-60	7.1	37
1696	Reaction-based phosphorescent nanosensor for ratiometric and time-resolved luminescence imaging of fluoride in live cells. <i>Chemical Communications</i> , 2015 , 51, 12839-42	5.8	36
1695	Phosphine oxide-jointed electron transporters for the reduction of interfacial quenching in highly efficient blue PHOLEDs. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 5430-5439	7.1	36
1694	Printed electronics integrated with paper-based microfluidics: new methodologies for next-generation health care. <i>Microfluidics and Nanofluidics</i> , 2015 , 19, 251-261	2.8	36
1693	Interface Engineering for Highly Efficient Electron-Transport-Layer-Free Perovskite Solar Cells. <i>Nano Letters</i> , 2020 , 20, 5799-5806	11.5	36
1692	Flexible phosphorus doped carbon nanosheets/nanofibers: Electrospun preparation and enhanced Li-storage properties as free-standing anodes for lithium ion batteries. <i>Journal of Power Sources</i> , 2018 , 384, 27-33	8.9	36
1691	Synergistic effect of anions and cations in additives for highly efficient and stable perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 9264-9270	13	36
1690	Dual confinement of polysulfides in boron-doped porous carbon sphere/graphene hybrid for advanced Li-S batteries. <i>Nano Research</i> , 2018 , 11, 4562-4573	10	36
1689	Encapsulation of metal layers within metal@rganic frameworks as hybrid thin films for selective catalysis. <i>Nano Research</i> , 2016 , 9, 158-164	10	36
1688	Compartmentalization within Self-Assembled Metal®rganic Framework Nanoparticles for Tandem Reactions. <i>Advanced Functional Materials</i> , 2018 , 28, 1802479	15.6	36

(2016-2018)

1687	Interfacial engineering enables Bi@C-TiO microspheres as superpower and long life anode for lithium-ion batteries. <i>Nano Energy</i> , 2018 , 51, 137-145	17.1	36
1686	Recent progress in two-photon small molecule fluorescent probes for enzymes. <i>Chinese Chemical Letters</i> , 2019 , 30, 1738-1744	8.1	36
1685	Hydrogen-bonded supramolecular conjugated polymer nanoparticles for white light-emitting devices. <i>Macromolecular Rapid Communications</i> , 2014 , 35, 895-900	4.8	36
1684	In situ synthesis of large-area single sub-10 nm nanoparticle arrays by polymer pen lithography. <i>Nanoscale</i> , 2014 , 6, 749-52	7.7	36
1683	Light-Tunable Nonvolatile Memory Characteristics in Photochromic RRAM. <i>Advanced Electronic Materials</i> , 2017 , 3, 1600416	6.4	36
1682	Hyperbranched triazine-containing polyfluorenes: Efficient blue emitters for polymer light-emitting diodes (PLEDs). <i>Polymer</i> , 2007 , 48, 1824-1829	3.9	36
1681	Influence of oxygen plasma treatment on poly(ether sulphone) films. <i>Polymer Degradation and Stability</i> , 2006 , 91, 12-20	4.7	36
1680	Thermooxidative stability of spectra of fluorene-based copolymers. <i>Polymer</i> , 2006 , 47, 4816-4823	3.9	36
1679	In situ XPS studies of thermally deposited potassium on poly(p-phenylene vinylene) and its ring-substituted derivatives. <i>Applied Surface Science</i> , 2001 , 181, 201-210	6.7	36
1678	Aggregation and permeation of 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran molecules in Alq. <i>Applied Physics Letters</i> , 2002 , 81, 1122-1124	3.4	36
1677	Improving the efficiency and stability of inverted perovskite solar cells by CuSCN-doped PEDOT:PSS. <i>Solar Energy Materials and Solar Cells</i> , 2020 , 206, 110316	6.4	36
1676	Critical role of chloride in organic ammonium spacer on the performance of Low-dimensional Ruddlesden-Popper perovskite solar cells. <i>Nano Energy</i> , 2019 , 56, 373-381	17.1	36
1675	Exposed high-energy facets in ultradispersed sub-10 nm SnO2 nanocrystals anchored on graphene for pseudocapacitive sodium storage and high-performance quasi-solid-state sodium-ion capacitors. <i>NPG Asia Materials</i> , 2018 , 10, 429-440	10.3	36
1674	A highly sensitive fluorescent sensor based on small molecules doped in electrospun nanofibers: detection of explosives as well as color modulation. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 8193-8199	97.1	35
1673	Synthesis of 4H/fcc-Au@Metal Sulfide Core-Shell Nanoribbons. <i>Journal of the American Chemical Society</i> , 2015 , 137, 10910-3	16.4	35
1672	Host Exciton Confinement for Enhanced Ffster-Transfer-Blend Gain Media Yielding Highly Efficient Yellow-Green Lasers. <i>Advanced Functional Materials</i> , 2018 , 28, 1705824	15.6	35
1671	Striving Toward Visible Light Photocatalytic Water Splitting Based on Natural Silicate Clay Mineral: The Interface Modification of Attapulgite at the Atomic-Molecular Level. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 4601-4607	8.3	35
1670	Influence of SiO2 shell thickness on power conversion efficiency in plasmonic polymer solar cells with Au nanorod@SiO2 core-shell structures. <i>Scientific Reports</i> , 2016 , 6, 25036	4.9	35

1669	In Situ Growth of CuS/SiO-Based Multifunctional Nanotherapeutic Agents for Combined Photodynamic/Photothermal Cancer Therapy. <i>ACS Applied Materials & Description of Cus (Photothermal Cancer Therapy)</i> . <i>ACS Applied Materials & Description of Cus (Photothermal Cancer Therapy)</i> . <i>ACS Applied Materials & Description of Cus (Photothermal Cancer Therapy)</i> .	₹618	35
1668	Achieving Dual Persistent Room-Temperature Phosphorescence from Polycyclic Luminophores via Inter-/Intramolecular Charge Transfer. <i>Advanced Optical Materials</i> , 2019 , 7, 1900511	8.1	35
1667	Synthesis and characterization of symmetric cyclooctatetraindoles: exploring the potential as electron-rich skeletons with extended Esystems. <i>Organic Letters</i> , 2014 , 16, 2942-5	6.2	35
1666	Fluorene-based macromolecular nanostructures and nanomaterials for organic (opto)electronics. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2013 , 371, 2012033	7	35
1665	Energy transfer in polyfluorene copolymer used for white-light organic light emitting device. <i>Organic Electronics</i> , 2013 , 14, 827-838	3.5	35
1664	Tuning the optical properties of 2-thienylpyridyl iridium complexes through carboranes and anions. <i>Chemistry - A European Journal</i> , 2015 , 21, 4721-30	4.8	35
1663	Synthesis of large-scale undoped and nitrogen-doped amorphous graphene on MgO substrate by chemical vapor deposition. <i>Journal of Materials Chemistry</i> , 2012 , 22, 19679		35
1662	Highly Selective Anionic Counterion-based Fluorescent Sensor for Hg(2+) by Grafted Conjugated Polyelectrolytes. <i>Macromolecular Rapid Communications</i> , 2010 , 31, 2160-5	4.8	35
1661	First Hydrogen-Bonding-Induced Self-Assembled Aggregates of a Polyfluorene Derivative. <i>Macromolecules</i> , 2003 , 36, 323-327	5.5	35
1660	Sodium stearate, an effective amphiphilic molecule buffer material between organic and metal layers in organic light-emitting devices. <i>Applied Physics Letters</i> , 2003 , 83, 1656-1658	3.4	35
1659	Ionic Liquids-Enabled Efficient and Stable Perovskite Photovoltaics: Progress and Challenges. <i>ACS Energy Letters</i> ,1453-1479	20.1	35
1658	Wide-Range Tunable Fluorescence Lifetime and Ultrabright Luminescence of Eu-Grafted Plasmonic Core-Shell Nanoparticles for Multiplexing. <i>Small</i> , 2016 , 12, 397-404	11	35
1657	Weavable, High-Performance, Solid-State Supercapacitors Based on Hybrid Fibers Made of Sandwiched Structure of MWCNT/rGO/MWCNT. <i>Advanced Electronic Materials</i> , 2016 , 2, 1600102	6.4	35
1656	Influence of Cl Incorporation in Perovskite Precursor on the Crystal Growth and Storage Stability of Perovskite Solar Cells. <i>ACS Applied Materials & Interfaces</i> , 2019 , 11, 6022-6030	9.5	35
1655	Steric-Hindrance-Functionalized Polydiarylfluorenes: Conformational Behavior, Stabilized Blue Electroluminescence, and Efficient Amplified Spontaneous Emission. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 37856-37863	9.5	34
1654	Efficient and Stable Low-Dimensional Ruddlesden-Popper Perovskite Solar Cells Enabled by Reducing Tunnel Barrier. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 1173-1179	6.4	34
1653	Thioflavin T as an Efficient G-Quadruplex Inducer for the Highly Sensitive Detection of Thrombin Using a New F\(\text{S}\)ter Resonance Energy Transfer System. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 16458-65	9.5	34
1652	A charged iridophosphor for time-resolved luminescent CO2 gas identification. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 66-72	7.1	34

(2019-2020)

1651	Organic Room-Temperature Phosphorescent Materials: From Static to Dynamic. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 6191-6200	6.4	34
1650	The formation of perovskite multiple quantum well structures for high performance light-emitting diodes. <i>Npj Flexible Electronics</i> , 2018 , 2,	10.7	34
1649	Tunable Nonvolatile Memory Behaviors of PCBM-MoS 2D Nanocomposites through Surface Deposition Ratio Control. <i>ACS Applied Materials & Deposition Ratio Control Ratio Control Materials & Deposition </i>	9.5	34
1648	Highly active and stable electrocatalytic hydrogen evolution catalyzed by nickel, iron doped cobalt disulfide@reduced graphene oxide nanohybrid electrocatalysts. <i>Materials Today Energy</i> , 2018 , 7, 44-50	7	34
1647	A transient-electroluminescence study on perovskite light-emitting diodes. <i>Applied Physics Letters</i> , 2019 , 115, 041102	3.4	34
1646	Tandem activated photodynamic and chemotherapy: Using pH-Sensitive nanosystems to realize different tumour distributions of photosensitizer/prodrug for amplified combination therapy. <i>Biomaterials</i> , 2019 , 219, 119393	15.6	34
1645	Polar-Electrode-Bridged Electroluminescent Displays: 2D Sensors Remotely Communicating Optically. <i>Advanced Materials</i> , 2017 , 29, 1703552	24	34
1644	Luminescent ion pairs with tunable emission colors for light-emitting devices and electrochromic switches. <i>Chemical Science</i> , 2017 , 8, 348-360	9.4	34
1643	Linear heterocyclic aromatic fluorescence compounds having various donor-acceptor spacers prepared by the combination of carbon-carbon bond and carbon-nitrogen bond cross-coupling reactions. <i>Journal of Organic Chemistry</i> , 2011 , 76, 4444-56	4.2	34
1642	Molecular hosts for triplet emitters in organic light-emitting diodes and the corresponding working principle. <i>Science China Chemistry</i> , 2010 , 53, 1679-1694	7.9	34
1641	UPS Study of Compounds with Metal $Bilicon$ Bonds: M(CO)nSiCl3 (M = Co, Mn; n = 4, 5) and Fe(CO)4(SiCl3)2. Organometallics, 1997 , 16, 1567-1572	3.8	34
1640	Polarization-Sensitive Halide Perovskites for Polarized Luminescence and Detection: Recent Advances and Perspectives. <i>Advanced Materials</i> , 2021 , 33, e2003615	24	34
1639	Kinetically Controlled, Scalable Synthesis of FeOOH Nanosheet Arrays on Nickel Foam toward Efficient Oxygen Evolution: The Key Role of In-Situ-Generated FNiOOH. <i>Advanced Materials</i> , 2021 , 33, e2005587	24	34
1638	Design of a wearable and shape-memory fibriform sensor for the detection of multimodal deformation. <i>Nanoscale</i> , 2017 , 10, 118-123	7.7	34
1637	Flexible Perovskite Solar Cells with High Power-Per-Weight: Progress, Application, and Perspectives. <i>ACS Energy Letters</i> , 2021 , 6, 2917-2943	20.1	34
1636	Recent Advances in Design of Flexible Electrodes for Miniaturized Supercapacitors. <i>Small Methods</i> , 2020 , 4, 1900824	12.8	34
1635	Insights into Li+-induced morphology evolution and upconversion luminescence enhancement of KSc2F7:Yb/Er nanocrystals. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 3503-3508	7.1	33
1634	Low-Threshold Organic Semiconductor Lasers with the Aid of Phosphorescent Ir(III) Complexes as Triplet Sensitizers. <i>Advanced Functional Materials</i> , 2019 , 29, 1806719	15.6	33

1633	Dipole Moment Effect of Cyano-Substituted Spirofluorenes on Charge Storage for Organic Transistor Memory. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 18014-18021	3.8	33
1632	Micrometer Wire Assisted Inline Mach Zehnder Interferometric Curvature Sensor. <i>IEEE Photonics Technology Letters</i> , 2016 , 28, 31-34	2.2	33
1631	Experimental and first principles investigation of the multiferroics BiFeO3 and Bi0.9Ca0.1FeO3: Structure, electronic, optical and magnetic properties. <i>Physica B: Condensed Matter</i> , 2016 , 481, 45-52	2.8	33
1630	Phosphorescent iridium(iii) complexes capable of imaging and distinguishing between exogenous and endogenous analytes in living cells. <i>Chemical Science</i> , 2018 , 9, 7236-7240	9.4	33
1629	Enhancement of magnetic and ferroelectric properties of BiFeO3 by Er and transition element (Mn, Co) co-doping. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2014 , 188, 26-30	3.1	33
1628	Synthesis, characterization, and catalytic behavior of a PSiP pincer-type ruthenium(II) complex. <i>Inorganic Chemistry Communication</i> , 2012 , 15, 194-197	3.1	33
1627	C-C bond cleavage in acetonitrile by copper(II)-bipyridine complexes and in situ formation of cyano-bridged mixed-valent copper complexes. <i>Dalton Transactions</i> , 2013 , 42, 3631-45	4.3	33
1626	One-pot, aqueous-phase synthesis of graphene oxide functionalized with heterocyclic groups to give increased solubility in organic solvents. <i>RSC Advances</i> , 2013 , 3, 45-49	3.7	33
1625	Magnetism in oxidized graphenes with hydroxyl groups. <i>Nanotechnology</i> , 2011 , 22, 105702	3.4	33
1624	Cruciform pfl diblock conjugated oligomers for electroluminescent applications. <i>New Journal of Chemistry</i> , 2006 , 30, 667-670	3.6	33
1623	Optical properties and time-resolved photoluminescence of conjugated polymers with europium complex side chain as an emitter. <i>Thin Solid Films</i> , 2002 , 417, 85-89	2.2	33
1622	MoS 2 coated hollow carbon spheres for anodes of lithium ion batteries. <i>2D Materials</i> , 2016 , 3, 024001	5.9	33
1621	4,5-Diazafluorene-Based Donor-Acceptor Small Molecules as Charge Trapping Elements for Tunable Nonvolatile Organic Transistor Memory. <i>Advanced Science</i> , 2018 , 5, 1800747	13.6	33
1620	Effect of thickness of polymer electret on charge trapping properties of pentacene-based nonvolatile field-effect transistor memory. <i>Organic Electronics</i> , 2017 , 43, 222-228	3.5	32
1619	Ni(OH)2/NiO nanosheet with opulent active sites for high-performance glucose biosensor. <i>Sensors and Actuators B: Chemical</i> , 2017 , 248, 169-177	8.5	32
1618	Two-Terminal Perovskites Tandem Solar Cells: Recent Advances and Perspectives. <i>Solar Rrl</i> , 2019 , 3, 19	09080	32
1617	A small-molecule probe for ratiometric photoacoustic imaging of hydrogen sulfide in living mice. <i>Chemical Communications</i> , 2019 , 55, 5934-5937	5.8	32
1616	Prolonging Ultralong Organic Phosphorescence Lifetime to 2.5 s through Confining Rotation in Molecular Rotor. <i>Advanced Optical Materials</i> , 2019 , 7, 1800820	8.1	32

(2020-2020)

1615	Molecular Configuration Fixation with CHITF Hydrogen Bonding for Thermally Activated Delayed Fluorescence Acceleration. <i>CheM</i> , 2020 , 6, 1998-2008	16.2	32	
1614	Enhanced Valley Zeeman Splitting in Fe-Doped Monolayer MoS. <i>ACS Nano</i> , 2020 , 14, 4636-4645	16.7	32	
1613	Chameleon-Like Thermochromic Luminescent Materials with Controllable Response Behaviors for Multilevel Security Printing. <i>Advanced Optical Materials</i> , 2020 , 8, 1901687	8.1	32	
1612	Dual-Signal Luminescent Detection of Dopamine by a Single Type of Lanthanide-Doped Nanoparticles. <i>ACS Sensors</i> , 2018 , 3, 1683-1689	9.2	32	
1611	Fluorene-based cathode interlayer polymers for high performance solution processed organic optoelectronic devices. <i>Organic Electronics</i> , 2014 , 15, 1244-1253	3.5	32	
1610	Synthesis of novel gold mesoflowers as SERS tags for immunoassay with improved sensitivity. <i>ACS Applied Materials & Discours (Materials & Discours)</i> 1, 21842-50	9.5	32	
1609	Describing curved-planar IIInteractions: modeled by corannulene, pyrene and coronene. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 12694-701	3.6	32	
1608	Boosting efficiency and stability of a Cu2ZnSnS4 photocathode by alloying Ge and increasing sulfur pressure simultaneously. <i>Nano Energy</i> , 2017 , 41, 18-26	17.1	32	
1607	Colorimetric assay for heterogeneous-catalyzed lipase activity: enzyme-regulated gold nanoparticle aggregation. <i>Journal of Agricultural and Food Chemistry</i> , 2015 , 63, 39-42	5.7	32	
1606	Diarylfluorene-Modified Fulleropyrrolidine Acceptors to Tune Aggregate Morphology for Solution-Processable Polymer/Fullerene Bulk-Heterojunction Solar Cells. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 8881-8887	3.8	32	
1605	Synthesis of high-performance graphene nanosheets by thermal reduction of graphene oxide. <i>Materials Research Bulletin</i> , 2011 , 46, 2131-2134	5.1	32	
1604	Conjugated polyelectrolyte brushes with extremely high charge density for improved energy transfer and fluorescence quenching applications. <i>Polymer Chemistry</i> , 2011 , 2, 2369	4.9	32	
1603	Water-soluble anionic conjugated polymers for metal ion sensing: Effect of interchain aggregation. Journal of Polymer Science Part A, 2009 , 47, 5057-5067	2.5	32	
1602	A Estacked and conjugated hybrid based on poly(N-vinylcarbazole) postfunctionalized with terfluorene for stable deep-blue hole-transporting materials. <i>Journal of Polymer Science Part A</i> , 2009 , 47, 5221-5229	2.5	32	
1601	A Cationic Water-Soluble Poly(p-phenylenevinylene) Derivative: Highly Sensitive Biosensor for Iron-Sulfur Protein Detection. <i>Macromolecular Rapid Communications</i> , 2006 , 27, 799-803	4.8	32	
1600	Surface modification of polyimide films via plasma polymerization and deposition of allylpentafluorobenzene. <i>Polymer</i> , 2002 , 43, 7279-7288	3.9	32	
1599	Transient biphotonic holographic grating in photoisomerizative azo materials. <i>Physical Review B</i> , 1998 , 57, 3874-3880	3.3	32	
1598	Highly efficient copper-rich chalcopyrite solar cells from DMF molecular solution. <i>Nano Energy</i> , 2020 , 69, 104438	17.1	32	

1597	Bioorthogonal "Labeling after Recognition" Affording an FRET-Based Luminescent Probe for Detecting and Imaging Caspase-3 via Photoluminescence Lifetime Imaging. <i>Journal of the American Chemical Society</i> , 2020 , 142, 1057-1064	16.4	32
1596	High-yield and rapid synthesis of ultrathin silver nanowires for low-haze transparent conductors. <i>RSC Advances</i> , 2017 , 7, 4891-4895	3.7	31
1595	Catalyst-free one-step synthesis of ortho-tetraaryl perylene diimides for efficient OPV non-fullerene acceptors. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 2781-2785	7.1	31
1594	A small molecule/fullerene binary acceptor system for high-performance polymer solar cells with enhanced light-harvesting properties and balanced carrier mobility. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 2460-2465	13	31
1593	A Facile and Universal Top-Down Method for Preparation of Monodisperse Transition-Metal Dichalcogenide Nanodots. <i>Angewandte Chemie</i> , 2015 , 127, 5515-5518	3.6	31
1592	Crystallinity Engineering of Hematite Nanorods for High-Efficiency Photoelectrochemical Water Splitting. <i>Advanced Science</i> , 2015 , 2, 1500005	13.6	31
1591	Refractive index dependent real-time plasmonic nanoprobes on a single silver nanocube for ultrasensitive detection of the lung cancer-associated miRNAs. <i>Chemical Communications</i> , 2015 , 51, 294	. -5 .8	31
1590	Substitution-driven structural, optical and magnetic transformation of Mn, Zn doped BiFeO3. <i>Ceramics International</i> , 2015 , 41, 2476-2483	5.1	31
1589	The mechanical bending effect and mechanism of high performance and low-voltage flexible organic thin-film transistors with a cross-linked PVP dielectric layer. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 2998-3004	7.1	31
1588	Carbon-nitrogen/graphene composite as metal-free electrocatalyst for the oxygen reduction reaction. <i>Science Bulletin</i> , 2011 , 56, 3583-3589		31
1587	Photophysical and electroluminescent properties of a Series of Monochromatic red-emitting europium-complexed nonconjugated copolymers based on diphenylphosphine oxide modified polyvinylcarbazole. <i>Polymer</i> , 2011 , 52, 804-813	3.9	31
1586	Polyphenylene Dendrimer-Templated In Situ Construction of Inorganic@rganic Hybrid Rice-Shaped Architectures. <i>Advanced Functional Materials</i> , 2010 , 20, 43-49	15.6	31
1585	Use of the beta-phase of poly(9,9-dioctylfluorene) as a probe into the interfacial interplay for the mixed bilayer films formed by sequential spin-coating. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 1611-8	₈ 3.4	31
1584	Comparison of the electrochemical and luminescence properties of two carbazole-based phosphine oxide Eu(III) complexes: effect of different bipolar ligand structures. <i>ChemPhysChem</i> , 2008 , 9, 1752-60	3.2	31
1583	Di-Channel Polyfluorene Containing Spiro-Bridged Oxadiazole Branches. <i>Macromolecular Rapid Communications</i> , 2005 , 26, 1729-1735	4.8	31
1582	Application of alternating fluorene and thiophene copolymers in polymer light-emitting diodes. <i>Synthetic Metals</i> , 2002 , 129, 129-134	3.6	31
1581	High Efficiency Inverted Organic Solar Cells with a Neutral Fulleropyrrolidine Electron-Collecting Interlayer. <i>ACS Applied Materials & Discrete Section 2016</i> , 8, 14293-300	9.5	31
1580	Understanding the Light Soaking Effects in Inverted Organic Solar Cells Functionalized with Conjugated Macroelectrolyte Electron-Collecting Interlayers. <i>Advanced Science</i> , 2016 , 3, 1500245	13.6	31

(2011-2019)

1579	Thermally activated delayed fluorescence enantiomers for solution-processed circularly polarized electroluminescence. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 14511-14516	7.1	31
1578	Scalable preparation of high performance fibrous electrodes with bio-inspired compact core-fluffy sheath structure for wearable supercapacitors. <i>Carbon</i> , 2020 , 157, 106-112	10.4	31
1577	Maximizing Aggregation of Organic Fluorophores to Prolong Fluorescence Lifetime for Two-Photon Fluorescence Lifetime Imaging. <i>Advanced Healthcare Materials</i> , 2018 , 7, e1800299	10.1	31
1576	Comprehensive studies of the Li effect on NaYF:Yb/Er nanocrystals: morphology, structure, and upconversion luminescence. <i>Dalton Transactions</i> , 2017 , 46, 8968-8974	4.3	30
1575	Recent Advances in Alternating Current-Driven Organic Light-Emitting Devices. <i>Advanced Materials</i> , 2017 , 29, 1701441	24	30
1574	Carbon@NiCo2S4 nanorods: an excellent electrode material for supercapacitors. <i>RSC Advances</i> , 2015 , 5, 83408-83414	3.7	30
1573	Intrinsic defects in biomass-derived carbons facilitate electroreduction of CO2. <i>Nano Research</i> , 2020 , 13, 729-735	10	30
1572	Ultralong Phosphorescence from Organic Ionic Crystals under Ambient Conditions. <i>Angewandte Chemie</i> , 2018 , 130, 686-690	3.6	30
1571	Amperometric cholesterol biosensor based on zinc oxide films on a silver nanowiregraphene oxide modified electrode. <i>Analytical Methods</i> , 2016 , 8, 1806-1812	3.2	30
1570	A High-Rate and Long-Life Aqueous Rechargeable Ammonium Zinc Hybrid Battery. <i>ChemSusChem</i> , 2019 , 12, 3732-3736	8.3	30
1569	High-Rate and High-Voltage Aqueous Rechargeable Zinc Ammonium Hybrid Battery from Selective Cation Intercalation Cathode. <i>ACS Applied Energy Materials</i> , 2019 , 2, 6984-6989	6.1	30
1568	High-Performance Inverted Planar Perovskite Solar Cells Enhanced by Thickness Tuning of New Dopant-Free Hole Transporting Layer. <i>Small</i> , 2019 , 15, e1904715	11	30
1567	Template-free synthesis of hematite photoanodes with nanostructured ATO conductive underlayer for PEC water splitting. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 36-40	9.5	30
1566	High Density Glycopolymers Functionalized Perylene Diimide Nanoparticles for Tumor-Targeted Photoacoustic Imaging and Enhanced Photothermal Therapy. <i>Biomacromolecules</i> , 2017 , 18, 3375-3386	6.9	30
1565	A Water-Soluble Conjugated Polymer with Pendant Disulfide Linkages to PEG Chains: A Highly Efficient Ratiometric Probe with Solubility-Induced Fluorescence Conversion for Thiol Detection. <i>Macromolecules</i> , 2015 , 48, 1017-1025	5.5	30
1564	NaF-mediated controlled-synthesis of multicolor Na(x)ScF(3+x):Yb/Er upconversion nanocrystals. <i>Nanoscale</i> , 2015 , 7, 4048-54	7.7	30
1563	Hysteresis mechanism and control in pentacene organic field-effect transistors with polymer dielectric. <i>AIP Advances</i> , 2013 , 3, 052122	1.5	30
1562	Improved Energy Transfer through the Formation of the Phase for Polyfluorenes Containing Phosphorescent Iridium(III) Complexes. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 11749-11757	3.8	30

1561	Reversible addition-fragmentation chain transfer polymerization of methacrylates containing hole- or electron-transporting groups. <i>Journal of Polymer Science Part A</i> , 2007 , 45, 242-252	2.5	30
1560	Cationic, water-soluble, fluorene-containing poly(arylene ethynylene)s: Effects of water solubility on aggregation, photoluminescence efficiency, and amplified fluorescence quenching in aqueous solutions. <i>Journal of Polymer Science Part A</i> , 2006 , 44, 5778-5794	2.5	30
1559	Synthesis of novel star-shaped carbazole-functionalized triazatruxenes. <i>Tetrahedron Letters</i> , 2006 , 47, 7089-7092	2	30
1558	Cobalt Single-Atom-Intercalated Molybdenum Disulfide for Sulfide Oxidation with Exceptional Chemoselectivity. <i>Advanced Materials</i> , 2020 , 32, e1906437	24	30
1557	Expanded MoSe Nanosheets Vertically Bonded on Reduced Graphene Oxide for Sodium and Potassium-Ion Storage. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 13158-13169	9.5	30
1556	Hybrid organicthetal oxide multilayer channel transistors with high operational stability. <i>Nature Electronics</i> , 2019 , 2, 587-595	28.4	30
1555	Flexible, Degradable, and Cost-Effective Strain Sensor Fabricated by a Scalable Papermaking Procedure. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 15749-15755	8.3	30
1554	Self-Templated Formation of Uniform F-CuO Hollow Octahedra for Lithium Ion Batteries. <i>Small</i> , 2017 , 13, 1603500	11	29
1553	Revisiting the Growth of Black Phosphorus in Sn-I Assisted Reactions. <i>Frontiers in Chemistry</i> , 2019 , 7, 21	5	29
1552	Using and recycling V2O5 as high performance anode materials for sustainable lithium ion battery. Journal of Power Sources, 2019 , 424, 158-164	8.9	29
1551	Coordination-mediated programmable assembly of unmodified oligonucleotides on plasmonic silver nanoparticles. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 11047-52	9.5	29
1550	Poly-adenine-based programmable engineering of gold nanoparticles for highly regulated spherical DNAzymes. <i>Nanoscale</i> , 2015 , 7, 18671-6	7.7	29
1549	Perfection of Perovskite Grain Boundary Passivation by Rhodium Incorporation for Efficient and Stable Solar Cells. <i>Nano-Micro Letters</i> , 2020 , 12, 119	19.5	29
1548	Dual-Wavelength Electrochemiluminescence Ratiometric Biosensor for NF- B p50 Detection with Dimethylthiodiaminoterephthalate Fluorophore and Self-Assembled DNA Tetrahedron Nanostructures Probe. <i>ACS Applied Materials & Data Self-Assembled</i> 12, 11409-11418	9.5	29
1547	A perylene diimide zwitterionic polymer for photoacoustic imaging guided photothermal/photodynamic synergistic therapy with single near-infrared irradiation. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 3395-3403	7.3	29
1546	Cobalt oxide nanosheets wrapped onto nickel foam for non-enzymatic detection of glucose. <i>Nanotechnology</i> , 2016 , 27, 344001	3.4	29
1545	Influence of heteroatoms on the charge mobility of anthracene derivatives. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 3517-3522	7.1	29
1544	Binder-free graphene/carbon nanotube/silicon hybrid grid as freestanding anode for high capacity lithium ion batteries. <i>Composites Part A: Applied Science and Manufacturing</i> , 2016 , 84, 386-392	8.4	29

1543	Mussel-Inspired, Surface-Attachable Initiator for Grafting of Antimicrobial and Antifouling Hydrogels. <i>Macromolecular Rapid Communications</i> , 2019 , 40, e1900268	4.8	29
1542	EConjugation-interrupted hyperbranched polymer electrets for organic nonvolatile transistor memory devices. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 3738-3743	7.1	29
1541	A water-soluble phosphorescent conjugated polymer brush for tumor-targeted photodynamic therapy. <i>Polymer Chemistry</i> , 2017 , 8, 5836-5844	4.9	29
1540	Toward Eco-friendly Green Organic Semiconductors: Recent Advances in Spiro[fluorene-9,9?-xanthene] (SFX)-Based Optoelectronic Materials and Devices. <i>Chinese Journal of Chemistry</i> , 2015 , 33, 815-827	4.9	29
1539	Fluorescent-magnetic poly(poly(ethyleneglycol)monomethacrylate)-grafted Fe3O4 nanoparticles from post-atom-transfer-radical-polymerization modification: synthesis, characterization, cellular uptake and imaging. <i>Journal of Materials Chemistry</i> , 2012 , 22, 6965		29
1538	Water-soluble conjugated polyelectrolyte brush encapsulated rare-earth ion doped nanoparticles with dual-upconversion properties for multicolor cell imaging. <i>Chemical Communications</i> , 2013 , 49, 9017	2.54 ⁸	29
1537	The synthesis of highly electroactive N-doped carbon nanotube/polyaniline/Au nanocomposites and their application to the biosensor. <i>Synthetic Metals</i> , 2011 , 161, 1940-1945	3.6	29
1536	Fluorescence Burn-onlimetal ion sensors based on switching of intramolecular charge transfer of donorlicceptor systems. <i>Sensors and Actuators B: Chemical</i> , 2010 , 150, 798-805	8.5	29
1535	The effects of different interfacial environments on the optical nonlinearity of nanometer-sized CdO organosol. <i>Applied Physics Letters</i> , 1997 , 71, 2097-2099	3.4	29
1534	Effective non-destructive readout of photochromic bisthienyletheneßhthalocyanine hybrid. <i>Dyes and Pigments</i> , 2007 , 73, 118-120	4.6	29
1533	Synthesis and characterization of a cyano-substituted electroluminescent polymer with well-defined conjugation length. <i>Thin Solid Films</i> , 2000 , 363, 110-113	2.2	29
1532	Conductive Porous Laminated Vanadium Nitride as Carbon-Free Hosts for High-Loading Sulfur Cathodes in Lithium-Sulfur Batteries. <i>ACS Nano</i> , 2020 ,	16.7	29
1531	Hydrazine Sensor Based on Co3O4/rGO/Carbon Cloth Electrochemical Electrode. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1500691	4.6	29
1530	Donor Ecceptor conjugated polymers based on thieno [3,2-b] indole (TI) and 2,1,3-benzothiadiazole (BT) for high efficiency polymer solar cells. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 5448-5460	7.1	29
1529	Unexpected fluorescent emission of graft sulfonated-acetoneformaldehyde lignin and its application as a dopant of PEDOT for high performance photovoltaic and light-emitting devices. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 5297-5306	7.1	29
1528	In-Plane Anisotropic Thermal Conductivity of Few-Layered Transition Metal Dichalcogenide Td-WTe. <i>Advanced Materials</i> , 2019 , 31, e1804979	24	29
1527	Syntheses, structures and magnetic properties of nine coordination polymers based on terphenyl-tetracarboxylic acid ligands. <i>Dalton Transactions</i> , 2017 , 46, 430-444	4.3	28
1526	Efficient perovskite solar cells fabricated by manganese cations incorporated in hybrid perovskites. Journal of Materials Chemistry C, 2019 , 7, 11943-11952	7.1	28

1525	Utilizing dpBonds for Ultralong Organic Phosphorescence. <i>Angewandte Chemie</i> , 2019 , 131, 6717-6721	3.6	28
1524	Color-tunable ultralong organic phosphorescence materials for visual UV-light detection. <i>Science China Chemistry</i> , 2020 , 63, 1443-1448	7.9	28
1523	A phosphorescent Ir(III) complex with formamide for the luminescence determination of low-level water content in organic solvents. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 6110-6116	7.1	28
1522	Emission Enhanced and Stabilized by Stereoisomeric Strategy in Hierarchical Uniform Supramolecular Framework. <i>CheM</i> , 2019 , 5, 2470-2483	16.2	28
1521	Monodispersed grafted conjugated polyelectrolyte-stabilized magnetic nanoparticles as multifunctional platform for cellular imaging and drug delivery. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 376-386	7.3	28
1520	Metal ion-mediated assembly of DNA nanostructures for cascade fluorescence resonance energy transfer-based fingerprint analysis. <i>Analytical Chemistry</i> , 2014 , 86, 7084-7	7.8	28
1519	Multi-functional fluorescent probe for Hg2+, Cu2+ and ClO- based on a pyrimidin-4-yl phenothiazine derivative. <i>Analyst, The</i> , 2013 , 138, 6607-16	5	28
1518	Hereditary Character of Alkyl-Chain Length Effect on Phase Conformation from Polydialkylfluorenes to Bulky Polydiarylfluorenes. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 19087-190	96 ⁸	28
1517	Intramolecular charge transfer induced emission from triphenylamine-o-carborane dyads. <i>RSC Advances</i> , 2017 , 7, 35543-35548	3.7	28
1516	Versatile luminescence of Eu^2+,3+-activated fluorosilicate apatites M_2Y_3[SiO_4]_3F (M = Sr, Ba) suitable for white light emitting diodes. <i>Optical Materials Express</i> , 2014 , 4, 396	2.6	28
1515	Thermostability, Photoluminescence, and Electrical Properties of Reduced Graphene Oxide©arbon Nanotube Hybrid Materials. <i>Crystals</i> , 2013 , 3, 28-37	2.3	28
1514	Novel heterofluorene-based hosts for highly efficient blue electrophosphorescence at low operating voltages. <i>Organic Electronics</i> , 2011 , 12, 1619-1624	3.5	28
1513	A facile route to semiconductor nanocrystal-semiconducting polymer complex using amine-functionalized rod-coil triblock copolymer as multidentate ligand. <i>Nanotechnology</i> , 2007 , 18, 035	704	28
1512	Origin of High Efficiency and Long-Term Stability in Ionic Liquid Perovskite Photovoltaic. <i>Research</i> , 2020 , 2020, 2616345	7.8	28
1511	In situ construction of gradient heterojunction using organic VOx precursor for efficient and stable inverted perovskite solar cells. <i>Nano Energy</i> , 2020 , 67, 104244	17.1	28
1510	Ultrashort laser pulse doubling by metal-halide perovskite multiple quantum wells. <i>Nature Communications</i> , 2020 , 11, 3361	17.4	28
1509	Porous dimanganese trioxide microflowers derived from microcoordinations for flexible solid-state asymmetric supercapacitors. <i>Nanoscale</i> , 2016 , 8, 11689-97	7.7	28
1508	Polydopamine Dots-Based Fluorescent Nanoswitch Assay for Reversible Recognition of Glutamic Acid and Al in Human Serum and Living Cell. <i>ACS Applied Materials & Discrete Acid Acid Acid Acid Acid Acid Acid Acid</i>	789	28

(2011-2019)

1507	A Bifunctional Saddle-Shaped Small Molecule as a Dopant-Free Hole Transporting Material and Interfacial Layer for Efficient and Stable Perovskite Solar Cells. <i>Solar Rrl</i> , 2019 , 3, 1900011	7.1	27	
1506	A MAPbBr:poly(ethylene oxide) composite perovskite quantum dot emission layer: enhanced film stability, coverage and device performance. <i>Nanoscale</i> , 2019 , 11, 9103-9114	7.7	27	
1505	Spin-Valley Locking Effect in Defect States of Monolayer MoS. <i>Nano Letters</i> , 2020 , 20, 2129-2136	11.5	27	
1504	Transforming Monolayer Transition-Metal Dichalcogenide Nanosheets into One-Dimensional Nanoscrolls with High Photosensitivity. <i>ACS Applied Materials & Dichalcogenide Name (Name of State of St</i>	9.5	27	
1503	Thin-film organic semiconductor devices: from flexibility to ultraflexibility. <i>Science China Materials</i> , 2016 , 59, 589-608	7.1	27	
1502	An Individual Nanocube-Based Plasmonic Biosensor for Real-Time Monitoring the Structural Switch of the Telomeric G-Quadruplex. <i>Small</i> , 2016 , 12, 2913-20	11	27	
1501	Fully conjugated block copolymers for single-component solar cells: synthesis, purification, and characterization. <i>New Journal of Chemistry</i> , 2016 , 40, 1825-1833	3.6	27	
1500	A T-shaped triazatruxene probe for the naked-eye detection of HCl gas with high sensitivity and selectivity. <i>Chemical Communications</i> , 2016 , 52, 2748-51	5.8	27	
1499	Quasi-Two-Dimensional Se-Terminated Bismuth Oxychalcogenide (BiOSe). ACS Nano, 2019 , 13, 13439-1	13 <u>144</u> 4	27	
1498	A hydrophilic monodisperse conjugated starburst macromolecule with multidimensional topology as electron transport/injection layer for organic electronics. <i>Polymer Chemistry</i> , 2014 , 5, 2942-2950	4.9	27	
1497	Synthesis of three-dimensional self-standing graphene/Ni(OH)2 composites for high-performance supercapacitors. <i>RSC Advances</i> , 2014 , 4, 18080-18085	3.7	27	
1496	Highly efficient red iridium(III) complexes based on phthalazine derivatives for organic light-emitting diodes. <i>Dyes and Pigments</i> , 2013 , 97, 43-51	4.6	27	
1495	Smart poly(N-isopropylacrylamide) containing iridium(III) complexes as water-soluble phosphorescent probe for sensing and bioimaging of homocysteine and cysteine. <i>Macromolecular Rapid Communications</i> , 2013 , 34, 81-6	4.8	27	
1494	The molecular and supramolecular aspects in mononuclear manganese(iii) Schiff-base spin crossover complexes. <i>Dalton Transactions</i> , 2017 , 46, 11063-11077	4.3	27	
1493	A bulky pyridinylfluorene-fuctionalizing approach to synthesize diarylfluorene-based bipolar host materials for efficient red, green, blue and white electrophosphorescent devices. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 3482	7.1	27	
1492	Performance enhancement of poly(3-hexylthiophene) organic field-effect transistor by inserting poly(methylmethacrylate) buffer layer. <i>Applied Physics Letters</i> , 2013 , 102, 111607	3.4	27	
1491	An excellent BODIPY dye containing a benzo[2,1,3]thiadiazole bridge as a highly selective colorimetric and fluorescent probe for Hg2+ with naked-eye detection. <i>New Journal of Chemistry</i> , 2011 , 35, 1194	3.6	27	
1490	Electrical characteristics and carrier transport mechanisms of write-once-read-many-times memory elements based on graphene oxide diodes. <i>Journal of Applied Physics</i> , 2011 , 110, 063709	2.5	27	

1489	Amphiphilic Graphene Composites. <i>Angewandte Chemie</i> , 2010 , 122, 9616-9619	3.6	27
1488	Substituent Effects on Two-Dimensional Assembling and Chain Folding of Rigid-Rod Polymer Poly(p-phenyleneethynylene) Derivatives on the Solid/Liquid Interface. <i>Macromolecules</i> , 2007 , 40, 4552	-4560	27
1487	A kinetic model for nanocrystal morphology evolution. <i>ChemPhysChem</i> , 2007 , 8, 703-11	3.2	27
1486	Syntheses, characterization, and energy transfer properties of benzothiadiazole-based hyperbranched polyfluorenes. <i>Polymer</i> , 2006 , 47, 7382-7390	3.9	27
1485	An efficient synthesis of novel spiro[[8H]indeno[2,1-b]-thiophene-8,9?-fluorene] building block for blue light-emitting materials. <i>Tetrahedron Letters</i> , 2006 , 47, 6421-6424	2	27
1484	Synthesis and electrochemical characterization of a new polymer constituted of alternating carbazole and oxadiazole moieties. <i>Synthetic Metals</i> , 1999 , 100, 297-301	3.6	27
1483	Highly Efficient and Stable Hydrogen Production in All pH Range by Two-Dimensional Structured Metal-Doped Tungsten Semicarbides. <i>Research</i> , 2019 , 2019, 4029516	7.8	27
1482	Composite Encapsulation Enabled Superior Comprehensive Stability of Perovskite Solar Cells. <i>ACS Applied Materials & Applied &</i>	9.5	27
1481	Intermediate-phase-assisted low-temperature formation of I-CsPbI films for high-efficiency deep-red light-emitting devices. <i>Nature Communications</i> , 2020 , 11, 4736	17.4	27
1480	Recent Advances of Cocrystals with Room Temperature Phosphorescence. <i>Advanced Optical Materials</i> , 2021 , 9, 2002197	8.1	27
1479	Facet-Dependent Control of PbI2 Colloids for over 20% Efficient Perovskite Solar Cells. <i>ACS Energy Letters</i> , 2019 , 4, 358-367	20.1	27
1478	3D-Printed highly stretchable conducting polymer electrodes for flexible supercapacitors. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 19649-19658	13	27
1477	Potassium 2-oxo-3-enoates as Effective and Versatile Surrogates for 即Unsaturated Aldehydes in NHC-Catalyzed Asymmetric Reactions. <i>Advanced Synthesis and Catalysis</i> , 2018 , 360, 479-484	5.6	27
1476	Direct storage of holes in ultrathin Ni(OH)2 on Fe2O3 photoelectrodes for integrated solar charging battery-type supercapacitors. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 21360-21367	13	27
1475	Charge-Storage Aromatic Amino Compounds for Nonvolatile Organic Transistor Memory Devices. <i>Small</i> , 2018 , 14, e1800756	11	27
1474	Orientation controlled preparation of nanoporous carbon nitride fibers and related composite for gas sensing under ambient conditions. <i>Nano Research</i> , 2017 , 10, 1710-1719	10	26
1473	Rational design of a luminescent nanoprobe for hypoxia imaging in vivo via ratiometric and photoluminescence lifetime imaging microscopy. <i>Chemical Communications</i> , 2017 , 53, 4144-4147	5.8	26
1472	Interlayer-Expanded Metal Sulfides on Graphene Triggered by a Molecularly Self-Promoting Process for Enhanced Lithium Ion Storage. <i>ACS Applied Materials & Description of Storage (Note: Applied Materials & Description of Storage)</i> .	3 ^{9.5}	26

(2020-2017)

1471	Hydrazinium Salt as Additive To Improve Film Morphology and Carrier Lifetime for High-Efficiency Planar-Heterojunction Perovskite Solar Cells via One-Step Method. <i>ACS Applied Materials & amp; Interfaces</i> , 2017 , 9, 36810-36816	9.5	26	
1470	Chemical Vapor Transport Reactions for Synthesizing Layered Materials and Their 2D Counterparts. <i>Small</i> , 2019 , 15, e1804404	11	26	
1469	Assessment for Anion-Exchange Reaction in CsPbX3 (X = Cl, Br, I) Nanocrystals from Bond Strength of Inorganic Salt. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 24313-24320	3.8	26	
1468	Three-Dimensional Sulfite Oxidase Bioanodes Based on Graphene Functionalized Carbon Paper for Sulfite/O2 Biofuel Cells. <i>ACS Catalysis</i> , 2019 , 9, 6543-6554	13.1	26	
1467	Microstructure Design of Carbonaceous Fibers: A Promising Strategy toward High-Performance Weaveable/Wearable Supercapacitors. <i>Small</i> , 2020 , 16, e2000653	11	26	
1466	High-rate, long cycle-life Li-ion battery anodes enabled by ultrasmall tin-based nanoparticles encapsulation. <i>Energy Storage Materials</i> , 2018 , 14, 169-178	19.4	26	
1465	A selenophene substituted diketopyrrolopyrrole nanotheranostic agent for highly efficient photoacoustic/infrared-thermal imaging-guided phototherapy. <i>Organic Chemistry Frontiers</i> , 2018 , 5, 98-	1503	26	
1464	Enhanced Performance of Perovskite Light-Emitting Diodes via Diamine Interface Modification. <i>ACS Applied Materials & Applied </i>	9.5	26	
1463	Amorphous Ionic Polymers with Color-Tunable Ultralong Organic Phosphorescence. <i>Angewandte Chemie</i> , 2019 , 131, 18952-18958	3.6	26	
1462	Redox-crosslinked graphene networks with enhanced electrochemical capacitance. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 12924	13	26	
1461	A new spiro[fluorene-9,9?-xanthene]-based host material possessing no conventional hole- and electron-transporting units for efficient and low voltage blue PHOLED via simple two-step synthesis. <i>Organic Electronics</i> , 2012 , 13, 2741-2746	3.5	26	
1460	One-pot synthesis of 2-bromo-4,5-diazafluoren-9-one via a tandem oxidationBromination-rearrangement of phenanthroline and its hammer-shaped donor ceptor organic semiconductors. <i>Tetrahedron</i> , 2011 , 67, 1977-1982	2.4	26	
1459	Recent progress in the numerical modeling for organic thin film solar cells. <i>Science China: Physics, Mechanics and Astronomy</i> , 2011 , 54, 375-387	3.6	26	
1458	pl Metallophosphor based on cationic iridium(III) complex for solid-state light-emitting electrochemical cells. <i>Journal of Materials Chemistry</i> , 2011 , 21, 13999		26	
1457	A novel series of copolymers containing 2,5-dicyano-1,4-phenylene-vinylenesynthetic tuning of the HOMO and LUMO energy levels of conjugated polymers. <i>Chemistry - A European Journal</i> , 2000 , 6, 1318-21	4.8	26	
1456	Fully soluble poly(p-phenylenevinylene)s via propagation control of the polymer chain conjugated lengths. <i>Thin Solid Films</i> , 2000 , 363, 98-101	2.2	26	
1455	Phenylene-functionalized polythiophene derivatives for light-emitting diodes: their synthesis, characterization and properties. <i>Journal of Materials Chemistry</i> , 2001 , 11, 3082-3086		26	
1454	Structure Engineering in Biomass-Derived Carbon Materials for Electrochemical Energy Storage. <i>Research</i> , 2020 , 2020, 8685436	7.8	26	

1453	A multifunctional shape-adaptive and biodegradable hydrogel with hemorrhage control and broad-spectrum antimicrobial activity for wound healing. <i>Biomaterials Science</i> , 2020 , 8, 6930-6945	7.4	26
1452	Ag Incorporation with Controlled Grain Growth Enables 12.5% Efficient Kesterite Solar Cell with Open Circuit Voltage Reached 64.2% Shockley Queisser Limit. <i>Advanced Functional Materials</i> , 2021 , 31, 2101927	15.6	26
1451	In Situ Fabrication of Ni2P Nanoparticles Embedded in Nitrogen and Phosphorus Codoped Carbon Nanofibers as a Superior Anode for Li-Ion Batteries. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 14795-14801	8.3	26
1450	Electrospun fluorescent sensors for the selective detection of nitro explosive vapors and trace water. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 18543-18550	13	26
1449	High-Performance Organic Solar Cells Based on a Non-Fullerene Acceptor with a Spiro Core. <i>Chemistry - an Asian Journal</i> , 2017 , 12, 721-725	4.5	25
1448	Low-temperature fabrication of Bi25FeO40/rGO nanocomposites with efficient photocatalytic performance under visible light irradiation. <i>RSC Advances</i> , 2017 , 7, 10064-10069	3.7	25
1447	Long-lived phosphorescent iridium(III) complexes conjugated with cationic polyfluorenes for heparin sensing and cellular imaging. <i>Macromolecular Rapid Communications</i> , 2015 , 36, 640-6	4.8	25
1446	Binding-induced collapse of DNA nano-assembly for naked-eye detection of ATP with plasmonic gold nanoparticles. <i>Biosensors and Bioelectronics</i> , 2015 , 65, 171-5	11.8	25
1445	Cu superstructures hydrothermally reduced by leaves and derived Cutto3O4 hybrids for flexible solid-state electrochemical energy storage devices. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 4840-4847	7 ¹³	25
1444	Single photon sources with single semiconductor quantum dots. Frontiers of Physics, 2014, 9, 170-193	3.7	25
1443	Friedel-Crafts bottom-up synthesis of fluorene-based soluble luminescent organic nanogrids. <i>Organic Letters</i> , 2014 , 16, 1748-51	6.2	25
1442	Two-Photon Optical Properties in Individual OrganicIhorganic Perovskite Microplates. <i>Advanced Optical Materials</i> , 2017 , 5, 1700809	8.1	25
1441	Controllable Multiple Depression in a Graphene Oxide Artificial Synapse. <i>Advanced Electronic Materials</i> , 2017 , 3, 1600244	6.4	25
1440	A highly selective and naked-eye sensor for Hg2+ based on quinazoline-4(3H)-thione. <i>New Journal of Chemistry</i> , 2012 , 36, 1879	3.6	25
1439	Modulating the optoelectronic properties of large, conjugated, high-energy gap, quaternary phosphine oxide hosts: impact of the triplet-excited-state location. <i>Chemistry - A European Journal</i> , 2013 , 19, 9549-61	4.8	25
1438	Water reduction systems associated with homoleptic cyclometalated iridium complexes of various 2-phenylpyridines. <i>ChemSusChem</i> , 2013 , 6, 1357-65	8.3	25
1437	Theoretical studies of electron transport in thiophene dimer: effects of substituent group and heteroatom. <i>Journal of Physical Chemistry A</i> , 2011 , 115, 4535-46	2.8	25
1436	Thermodynamic controlled hierarchical assembly of ternary supramolecular networks at the liquid-solid interface. <i>Chemistry - A European Journal</i> , 2009 , 15, 5418-23	4.8	25

(2020-2009)

1435	Hyperbranched framework of interrupted Econjugated polymers end-capped with high carrier-mobility moieties for stable light-emitting materials with low driving voltage. <i>Journal of Polymer Science Part A</i> , 2009 , 47, 6451-6462	2.5	25	
1434	Synthesis and Characterization of Starburst 9-Phenylcarbazole/Triazatruxene Hybrids. <i>Chemistry Letters</i> , 2008 , 37, 986-987	1.7	25	
1433	Synthesis of grafted poly(p-phenyleneethynylene) with energy donor\(\text{donor}\) cceptor architecture via atom transfer radical polymerization: Towards nonaggregating and hole-facilitating light-emitting material. Journal of Polymer Science Part A, 2007, 45, 3776-3787	2.5	25	
1432	Supramolecule-regulated photophysics of oligo(p-phenyleneethynylene)-based rod-coil block copolymers: effect of molecular architecture. <i>Chemistry - A European Journal</i> , 2008 , 14, 1205-15	4.8	25	
1431	Distinct phosphorescence enhancement of red-emitting iridium(III) complexes with formyl-functionalized phenylpyridine ligands. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 4709-4718	7.1	25	
1430	Mobility versus Alignment of a Semiconducting Extended Discotic Liquid-Crystalline Triindole. <i>ACS Applied Materials & Discotic Materials & Discotic Liquid-Crystalline Triindole.</i>	9.5	25	
1429	Paper-based fluorescent immunoassay for highly sensitive and selective detection of norfloxacin in milk at picogram level. <i>Talanta</i> , 2019 , 195, 333-338	6.2	25	
1428	Effects of meta or para connected organic dyes for dye-sensitized solar cell. <i>Dyes and Pigments</i> , 2018 , 158, 165-174	4.6	25	
1427	Dimerization effect of fluorene-based semiconductors on conformational planarization for microcrystal lasing. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 5345-5355	7.1	24	
1426	Stabilittvon Perowskit-Solarzellen: Einfluss der Substitution von A-Kation und X-Anion. <i>Angewandte Chemie</i> , 2017 , 129, 1210-1233	3.6	24	
1425	Achieving High Volumetric Lithium Storage Capacity in Compact Carbon Materials with Controllable Nitrogen Doping. <i>Advanced Functional Materials</i> , 2019 , 29, 1807441	15.6	24	
1424	Facile Synthesis of 2,2-Diacyl Spirocyclohexanones via an N-Heterocyclic Carbene-Catalyzed Formal [3C + 3C] Annulation. <i>Organic Letters</i> , 2019 , 21, 926-930	6.2	24	
1423	Wrinkled two-dimensional ultrathin Cu(ii)-porphyrin framework nanosheets hybridized with polypyrrole for flexible all-solid-state supercapacitors. <i>Dalton Transactions</i> , 2019 , 48, 9631-9638	4.3	24	
1422	Highly efficient red phosphorescent organic light-emitting devices based on solution-processed small molecular mixed-host. <i>Journal of Luminescence</i> , 2015 , 161, 300-305	3.8	24	
1421	Saturated and stabilized white electroluminescence with simultaneous three-color emission from a six-armed star-shaped single-polymer system. <i>Polymer Chemistry</i> , 2015 , 6, 8019-8028	4.9	24	
1420	A water-soluble tetraphenylethene based probe for luminescent carbon dioxide detection and its biological application. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 11850-11856	7.1	24	
1419	Heteroatom-bridged benzothiazolyls for organic solar cells: a theoretical study. <i>Journal of Physical Chemistry B</i> , 2015 , 119, 583-91	3.4	24	
1418	Ultrastretchable, Self-Healable, and Wearable Epidermal Sensors Based on Ultralong Ag Nanowires Composited Binary-Networked Hydrogels. <i>Advanced Electronic Materials</i> , 2020 , 6, 2000267	6.4	24	

1417	A Facile and Green Approach to Synthesize Mesoporous Anatase TiO2 Nanomaterials for Efficient Dye-Sensitized and Hole-Conductor-Free Perovskite Solar Cells. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 5588-5597	8.3	24
1416	Zwitterionic diketopyrrolopyrrole for fluorescence/photoacoustic imaging guided photodynamic/photothermal therapy. <i>Polymer Chemistry</i> , 2018 , 9, 2805-2812	4.9	24
1415	Light Sources and Photodetectors Enabled by 2D Semiconductors. <i>Small Methods</i> , 2018 , 2, 1800019	12.8	24
1414	Selenium-functionalized metal-organic frameworks as enzyme mimics. <i>Nano Research</i> , 2018 , 11, 5761-5	57 <u>€</u> 8	24
1413	Multi-substituted triazatruxene-functionalized pyrene derivatives as efficient organic laser gain media. <i>RSC Advances</i> , 2016 , 6, 6266-6275	3.7	24
1412	A controllable approach to development of multi-spectral conjugated polymer nanoparticles with increased emission for cell imaging. <i>Chemical Communications</i> , 2013 , 49, 10623-5	5.8	24
1411	Alkyl effects on the optoelectronic properties of bicarbazole/cyanobenzene hybrid host materials: Double delayed fluorescent host/dopant systems in solution-processed OLEDs. <i>Dyes and Pigments</i> , 2017 , 136, 543-552	4.6	24
1410	Heteronuclear phosphorescent iridium(III) complexes with tunable photophysical and excited-state properties by chelating BF2 moiety for application in bioimaging. <i>RSC Advances</i> , 2013 , 3, 8766	3.7	24
1409	Solvent- and pH-induced self-assembly of cationic meta-linked poly(phenylene ethynylene): effects of helix formation on amplified fluorescence quenching and FEster resonance energy transfer. <i>Langmuir</i> , 2010 , 26, 19120-8	4	24
1408	BF3/Et2O-mediated Friedel/Irafts CH bond polymerization to synthesize Econjugation-interrupted polymer semiconductors. <i>Polymer Chemistry</i> , 2011 , 2, 2179	4.9	24
1407	Synthesis, spectroscopy and electrochemistry study on a novel di-silyl substituted poly(p-phenylenevinylene). <i>Synthetic Metals</i> , 1999 , 105, 85-89	3.6	24
1406	Spectroscopic and Electrochemical Study of a Novel Blue Electroluminescent p-n Diblock Conjugated Copolymer. <i>Journal of Physical Chemistry B</i> , 1999 , 103, 6429-6433	3.4	24
1405	MXene Quantum Dot/Polymer Hybrid Structures with Tunable Electrical Conductance and Resistive Switching for Nonvolatile Memory Devices. <i>Advanced Electronic Materials</i> , 2020 , 6, 1900493	6.4	24
1404	Manipulating the Dynamics of Dark Excited States in Organic Materials for Phototheranostics. <i>Accounts of Chemical Research</i> , 2021 , 54, 697-706	24.3	24
1403	State-Of-The-Art and Future Challenges in High Energy Lithium-Selenium Batteries. <i>Advanced Materials</i> , 2021 , 33, e2003845	24	24
1402	Lysosome-Assisted Mitochondrial Targeting Nanoprobe Based on Dye-Modified Upconversion Nanophosphors for Ratiometric Imaging of Mitochondrial Hydrogen Sulfide. <i>ACS Applied Materials</i> & Mamp; Interfaces, 2018, 10, 39544-39556	9.5	24
1401	Template-Free Synthesis of Cobalt Silicate Nanoparticles Decorated Nanosheets for High Performance Lithium Ion Batteries. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 15591-15597	8.3	24
1400	Layer-by-Layer 3D Constructs of Fibroblasts in Hydrogel for Examining Transdermal Penetration Capability of Nanoparticles. <i>SLAS Technology</i> , 2017 , 22, 447-453	3	23

1399	A thermally stable anthracene derivative for application in organic thin film transistors. <i>Organic Electronics</i> , 2017 , 43, 105-111	3.5	23
1398	Tailoring the Porosity in Iron Phosphosulfide Nanosheets to Improve the Performance of Photocatalytic Hydrogen Evolution. <i>ChemSusChem</i> , 2019 , 12, 2651-2659	8.3	23
1397	Porous Organic Polymers as Promising Electrode Materials for Energy Storage Devices. <i>Advanced Materials Technologies</i> , 2020 , 2000154	6.8	23
1396	Improved Performance of CHNHPbICl Resistive Switching Memory by Assembling 2D/3D Perovskite Heterostructures. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 15439-15445	9.5	23
1395	Localized Electrons Enhanced Ion Transport for Ultrafast Electrochemical Energy Storage. <i>Advanced Materials</i> , 2020 , 32, e1905578	24	23
1394	Probing Triplet Excited States and Managing Blue Light Emission of Neutral Tetradentate Platinum(II) Complexes. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 2285-2292	6.4	23
1393	Design and Synthesis of Monodisperse Macromolecular Starbursts Based on a Triazine Center with Multibranched Oligofluorenes as Efficient Gain Media for Organic Lasers. <i>Macromolecules</i> , 2018 , 51, 133	25:133	35 ²³
1392	Versatile functionalization of trifluoromethyl based deep blue thermally activated delayed fluorescence materials for organic light emitting diodes. <i>New Journal of Chemistry</i> , 2018 , 42, 4317-4323	3.6	23
1391	Spatially confined luminescence process in tip-modified heterogeneous-structured microrods for high-level anti-counterfeiting. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 9516-9522	3.6	23
1390	Interface induce growth of intermediate layer for bandgap engineering insights into photoelectrochemical water splitting. <i>Scientific Reports</i> , 2016 , 6, 27241	4.9	23
1389	Structural insights into the counterion effects on the manganese(III) spin crossover system with hexadentate Schiff-base ligands. <i>Dalton Transactions</i> , 2016 , 45, 5676-88	4.3	23
1388	CuPc/C60 bulk heterojunction photovoltaic cells with evidence of phase segregation. <i>Organic Electronics</i> , 2013 , 14, 250-254	3.5	23
1387	Synthesis and characterization of diazafluorene-based oligofluorenes and polyfluorene. <i>Polymer Chemistry</i> , 2013 , 4, 1796	4.9	23
1386	Highly effective thieno[2,3-b]indole-diketopyrrolopyrrole near-infrared photosensitizer for photodynamic/photothermal dual mode therapy. <i>Dyes and Pigments</i> , 2017 , 147, 270-282	4.6	23
1385	Computational design and selection of optimal building blocks and linking topologies for construction of high-performance host materials. <i>RSC Advances</i> , 2012 , 2, 7860	3.7	23
1384	Theoretical Study of Charge-Transfer Properties of the Estacked Poly(1,1-silafluorene)s. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 14778-14785	3.8	23
1383	An optical-logic system based on cationic conjugated polymer/DNA/intercalating dyes assembly for label-free detection of conformational conversion of DNA i-motif structure. <i>Polymer Chemistry</i> , 2011 , 2, 1341	4.9	23
1382	Molecule Length Directed Self-Assembly Behavior of Tetratopic Oligomeric Phenylene Ethynylenes End-Capped with Carboxylic Groups by Scanning Tunneling Microscopy. Journal of Physical Chemistry C 2010, 114, 2021, 2027	3.8	23

1381	Germafluorene conjugated copolymerBynthesis and applications in blue-light-emitting diodes and host materials. <i>Science in China Series B: Chemistry</i> , 2009 , 52, 212-218		23
1380	Spectroscopic study of intramolecular energy transfer in a phosphine oxide Eu3+ complex: A stepwise process induced by intermediate energy levels. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2011 , 217, 213-218	4.7	23
1379	A bipyridine-containing water-soluble conjugated polymer: Highly efficient fluorescence chemosensor for convenient transition metal ion detection in aqueous solution. <i>Polymer</i> , 2006 , 47, 522	8 ³ 5232	23
1378	A fluorene-containing water-soluble poly(p-phenyleneethynylene) derivative: Highly fluorescent and sensitive conjugated polymer with minor aggregation in aqueous solution. <i>Polymer</i> , 2006 , 47, 5233-	- <i>§</i> 238	23
1377	Color Tuning Based on a Six-membered Chelated Iridium(III) Complex with Aza-aromatic Ligand. <i>Chemistry Letters</i> , 2005 , 34, 1668-1669	1.7	23
1376	Polymorphism-Dependent Dynamic Ultralong Organic Phosphorescence. <i>Research</i> , 2020 , 2020, 818345	07.8	23
1375	Construction of Pt-M (M = Co, Ni, Fe)/g-C3N4 Composites for Highly Efficient Photocatalytic H2 Generation. <i>Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica</i> , 2020 , 36, 1907001-0	3.8	23
1374	Recent Advances on Host-Guest Material Systems toward Organic Room Temperature Phosphorescence. <i>Small</i> , 2021 , e2104073	11	23
1373	Modeling Thin Film Solar Cells: From Organic to Perovskite. <i>Advanced Science</i> , 2020 , 7, 1901397	13.6	23
1372	Controlling Organic Room Temperature Phosphorescence through External Heavy-Atom Effect for White Light Emission and Luminescence Printing. <i>Advanced Optical Materials</i> , 2020 , 8, 1901437	8.1	23
1371	From ScOOH to Sc2 O3: Phase Control, Luminescent Properties, and Applications. <i>Advanced Materials</i> , 2016 , 28, 6665-71	24	23
1370	Room-Temperature Phosphorescence from Metal-Free Organic Materials in Solution: Origin and Molecular Design. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 1037-1042	6.4	23
1369	Rational design of NIR fluorescence probes for sensitive detection of viscosity in living cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019 , 214, 339-347	4.4	23
1368	Industrially weavable metal/cotton yarn air electrodes for highly flexible and stable wire-shaped LiD2 batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 3638-3644	13	22
1367	Towards Monodisperse Star-Shaped Ladder-Type Conjugated Systems: Design, Synthesis, Stabilized Blue Electroluminescence, and Amplified Spontaneous Emission. <i>Chemistry - A European Journal</i> , 2017 , 23, 5448-5458	4.8	22
1366	Nanoscale hybrid multidimensional perovskites with alternating cations for high performance photovoltaic. <i>Nano Energy</i> , 2019 , 65, 104050	17.1	22
1365	Identifying the active site of ultrathin NiCo LDH as an efficient peroxidase mimic with superior substrate affinity for sensitive detection of hydrogen peroxide. <i>Journal of Materials Chemistry B</i> , 2019 , 7, 6232-6237	7.3	22
1364	Electrically tunable physical properties of two-dimensional materials. <i>Nano Today</i> , 2019 , 27, 99-119	17.9	22

(2014-2019)

1363	AIPE-active platinum(II) complexes with tunable photophysical properties and their application in constructing thermosensitive probes used for intracellular temperature imaging. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 7893-7899	7.1	22	
1362	Bright Free Exciton Electroluminescence from Mn-Doped Two-Dimensional Layered Perovskites. Journal of Physical Chemistry Letters, 2019 , 10, 3171-3175	6.4	22	
1361	A highly sensitive self-enhanced aptasensor based on a stable ultrathin 2D metal-organic layer with outstanding electrochemiluminescence property. <i>Nanoscale</i> , 2019 , 11, 10056-10063	7.7	22	
1360	An efficient yellow-emitting vanadate Cs 5 V 3 O 10 under UV light and X-ray excitation. <i>Materials Letters</i> , 2015 , 149, 89-91	3.3	22	
1359	Single-step fabrication of catechol-poly-L-lysine antimicrobial paint that prevents superbug infection and promotes osteoconductivity of titanium implants. <i>Chemical Engineering Journal</i> , 2020 , 396, 125240	14.7	22	
1358	Two-In-One Method for Graphene Transfer: Simplified Fabrication Process for Organic Light-Emitting Diodes. <i>ACS Applied Materials & Diodes amp; Interfaces</i> , 2018 , 10, 7289-7295	9.5	22	
1357	A Convenient Approach To Synthesize o-Carborane-Functionalized Phosphorescent Iridium(III) Complexes for Endocellular Hypoxia Imaging. <i>Chemistry - A European Journal</i> , 2016 , 22, 17282-17290	4.8	22	
1356	First principles investigation on the electronic, magnetic and optical properties of Bi 0.8 M 0.2 Fe 0.9 Co 0.1 O 3 (M = La, Gd, Er, Lu). <i>Computational and Theoretical Chemistry</i> , 2016 , 1084, 36-42	2	22	
1355	Selectively Modulating Triplet Exciton Formation in Host Materials for Highly Efficient Blue Electrophosphorescence. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 7274-82	9.5	22	
1354	A europium(III) metal-organic framework as ratiometric turn-on luminescent sensor for Al3+ ions. <i>Science China Materials</i> , 2018 , 61, 752-757	7.1	22	
1353	Three dimensional carbon substrate materials for electrolysis of water. <i>Science China Materials</i> , 2018 , 61, 1143-1153	7.1	22	
1352	Predicting intersystem crossing efficiencies of organic molecules for efficient thermally activated delayed fluorescence. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 9523-9530	7.1	22	
1351	Low temperature growth of graphene on Cu-Ni alloy nanofibers for stable, flexible electrodes. <i>Nanoscale</i> , 2014 , 6, 5110-5	7.7	22	
1350	Solution-processed diarylfluorene derivatives for violet-blue amplified spontaneous emission and electroluminescence. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 9903-9910	7.1	22	
1349	Interface-Engineered Ni(OH) /祖ike FeOOH Electrocatalysts for Highly Efficient and Stable Oxygen Evolution Reaction. <i>Chemistry - an Asian Journal</i> , 2017 , 12, 2720-2726	4.5	22	
1348	Improving the Performance of Microbial Fuel Cells through Anode Manipulation. <i>ChemPlusChem</i> , 2015 , 80, 1216-1225	2.8	22	
1347	Solution processed single-emission layer white polymer light-emitting diodes with high color quality and high performance from a poly(N-vinyl)carbazole host. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 8860-9	3.6	22	
1346	High-efficiency, broad-band and wide-angle optical absorption in ultra-thin organic photovoltaic devices. <i>Optics Express</i> , 2014 , 22 Suppl 2, A376-85	3.3	22	

1345	Preparation of Graphene/Polypyrrole Composite Film via Electrodeposition for Supercapacitors. <i>IEEE Nanotechnology Magazine</i> , 2012 , 11, 1080-1086	2.6	22
1344	Palladium-catalyzed direct arylation of C-H bond to construct quaternary carbon centers: the synthesis of diarylfluorene. <i>Organic Letters</i> , 2013 , 15, 3102-5	6.2	22
1343	In Situ Modification of Three-Dimensional Polyphenylene Dendrimer-Templated CuO Rice-Shaped Architectures with Electron Beam Irradiation. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 13465-13470	3.8	22
1342	Organic light-emitting devices (OLED) based on new triphenylamine derivatives. <i>Synthetic Metals</i> , 2009 , 159, 194-200	3.6	22
1341	Stable hole-transporting molecular glasses based on complicated 9,9-diarylfluorenes (CDAFs). <i>Synthetic Metals</i> , 2009 , 159, 1055-1060	3.6	22
1340	Triazatruxene-containing hyperbranched polymers: Microwave-assisted synthesis and optoelectronic properties. <i>Science China Chemistry</i> , 2010 , 53, 2472-2480	7.9	22
1339	Synthesis and characterization of a main-chain-type conjugated copolymer containing rare earth with photocrosslinkable group. <i>Journal of Polymer Science Part A</i> , 2007 , 45, 388-394	2.5	22
1338	Toward Hydrogen-Free and Dendrite-Free Aqueous Zinc Batteries: Formation of Zincophilic Protective Layer on Zn Anodes <i>Advanced Science</i> , 2022 , e2104866	13.6	22
1337	Single-Step Organization of Plasmonic Gold Metamaterials with Self-Assembled DNA Nanostructures. <i>Research</i> , 2019 , 2019, 7403580	7.8	22
1336	Flexible and Degradable Multimodal Sensor Fabricated by Transferring Laser-Induced Porous Carbon on Starch Film. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 527-533	8.3	22
1335	Construction of Smart Manganese Dioxide-Based All-in-One Nanoplatform for Cancer Diagnosis and Therapy. <i>Small Methods</i> , 2020 , 4, 2000566	12.8	22
1334	Chemiluminescence-initiated and -enhanced photoisomerization for tissue-depth-independent photo-controlled drug release. <i>Chemical Science</i> , 2019 , 10, 1401-1409	9.4	22
1333	Arbutin Protects Against Parkinson's Disease-Associated Mitochondrial Dysfunction In Vitro and In Vivo. <i>NeuroMolecular Medicine</i> , 2020 , 22, 56-67	4.6	22
1332	Double-acceptor conjugated polymers for NIR-II fluorescence imaging and NIR-II photothermal therapy applications. <i>Journal of Materials Chemistry B</i> , 2021 , 9, 1002-1008	7.3	22
1331	Control of circularly polarized luminescence from a boron ketoiminate-based Econjugated polymer via conformational locks. <i>Polymer Chemistry</i> , 2018 , 9, 5278-5285	4.9	22
1330	Using Ultrafast Responsive Phosphorescent Nanoprobe to Visualize Elevated Peroxynitrite In Vitro and In Vivo via Ratiometric and Time-Resolved Photoluminescence Imaging. <i>Advanced Healthcare Materials</i> , 2018 , 7, e1800309	10.1	22
1329	Stimulus-cleavable chemistry in the field of controlled drug delivery. <i>Chemical Society Reviews</i> , 2021 , 50, 4872-4931	58.5	22
1328	Alleviating the emitter concentration effect on upconversion nanoparticles via an inert shell. Journal of Materials Chemistry C, 2017 , 5, 1537-1543	7.1	21

1327	A High Performance Deep Blue Organic Laser Gain Material. Advanced Optical Materials, 2017, 5, 160100	08.1	21
1326	Highly efficient and stable inverted planar solar cells from (FAI)x(MABr)1\(\text{PDI2} \) perovskites. <i>Nano Energy</i> , 2017 , 35, 62-70	17.1	21
1325	An efficient and thickness insensitive cathode interface material for high performance inverted perovskite solar cells with 17.27% efficiency. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 5949-5955	7.1	21
1324	High-color-purity and efficient solution-processable blue phosphorescent light-emitting diodes with Pt(II) complexes featuring 3 th transitions. <i>Materials Chemistry Frontiers</i> , 2019 , 3, 2448-2454	7.8	21
1323	Iridium(III)-Complexed Polydendrimers for Inkjet-Printing OLEDs: The Influence of Solubilizing Steric Hindrance Groups. <i>ACS Applied Materials & Description</i> (2019), 11, 26174-26184	9.5	21
1322	Enhanced Valley Splitting of Transition-Metal Dichalcogenide by Vacancies in Robust Ferromagnetic Insulating Chromium Trihalides. <i>ACS Applied Materials & Dichalcogenide & Dich</i>	1 8864	21
1321	Revealing the interactions between pentagon-octagon-pentagon defect graphene and organic donor/acceptor molecules: a theoretical study. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 4919-25	3.6	21
1320	Nondoped deep-blue spirofluorenexanthene-based green organic semiconductors (GOS) via a pot, atom and step economic (PASE) route combining direct arylation with tandem reaction. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 94-99	7.1	21
1319	Recent progress on low dimensional perovskite solar cells. <i>Journal of Energy Chemistry</i> , 2018 , 27, 1091-1	100	21
1318	Manipulating the Stacking of Triplet Chromophores in the Crystal Form for Ultralong Organic Phosphorescence. <i>Angewandte Chemie</i> , 2019 , 131, 14278-14283	3.6	21
1317	Fully Solution-Processed Transparent Nonvolatile and Volatile Multifunctional Memory Devices from Conductive Polymer and Graphene Oxide. <i>Advanced Electronic Materials</i> , 2017 , 3, 1700135	6.4	21
1316	An Easy Approach to Control Phase Formation in PFO Films for Optimized Emission Properties. <i>Molecules</i> , 2017 , 22,	4.8	21
1315	Controllably Tuning Excited-State Energy in Ternary Hosts for Ultralow-Voltage-Driven Blue Electrophosphorescence. <i>Angewandte Chemie</i> , 2012 , 124, 10251-10255	3.6	21
1314	Facile synthesis of shape and size tunable porphyrinoid coordination polymers: from copper porphyrin nanoplates to microspindles. <i>Chemical Communications</i> , 2011 , 47, 5055-7	5.8	21
1313	Highly Sensitive Fluorometric Hg2+ Biosensor with a Mercury(II)-Speci?c Oligonucleotide (MSO) Probe and Water-Soluble Graphene Oxide (WSGO). <i>Chinese Journal of Chemistry</i> , 2011 , 29, 1031-1035	4.9	21
1312	A colorimetric strategy based on a water-soluble conjugated polymer for sensing pH-driven conformational conversion of DNA i-motif structure. <i>Biosensors and Bioelectronics</i> , 2010 , 25, 1838-42	11.8	21
1311	Synthesis of 1,4-bis(1,3,4-oxadiazol-2-yl)-2,5-dialkoxybenzeneßligothiophene copolymers with different emissive colors: synthetically tuning the photoluminescence of conjugated polymers. <i>Chemical Communications</i> , 1998 , 1957-1958	5.8	21
1310	ATRP Synthesis of Oligofluorene-Based Liquid Crystalline Conjugated Block Copolymers. <i>Macromolecules</i> , 2006 , 39, 1364-1375	5.5	21

1309	Borophene-like boron subunits-inserted molybdenum framework of MoB2 enables stable and quick-acting Li2S6-based lithium-sulfur batteries. <i>Energy Storage Materials</i> , 2020 , 32, 216-224	19.4	21
1308	Frequency-Upconverted Stimulated Emission by Up to Six-Photon Excitation from Highly Extended Spiro-Fused Ladder-Type Oligo(p-phenylene)s. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 100	07-400	o 75
1307	Experimental and theoretical studies on localized surface plasmon resonance based fiber optic sensor using graphene oxide coated silver nanoparticles. <i>Journal Physics D: Applied Physics</i> , 2016 , 49, 285101	3	21
1306	Asymmetric Carbene-Catalyzed Oxidation of Functionalized Aldimines as 1,4-Dipoles. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 7913-7919	16.4	21
1305	Mito-Bomb: Targeting Mitochondria for Cancer Therapy. <i>Advanced Materials</i> , 2021 , 33, e2007778	24	21
1304	Rectification-Regulated Memristive Characteristics in Electron-Type CuPc-Based Element for Electrical Synapse. <i>Advanced Electronic Materials</i> , 2017 , 3, 1700063	6.4	20
1303	Bendable Network Built with Ultralong Silica Nanowires as a Stable Separator for High-Safety and High-Power Lithium-Metal Batteries. <i>ACS Applied Materials & Samp; Interfaces</i> , 2019 , 11, 34895-34903	9.5	20
1302	Assembling laminated films via the synchronous reduction of graphene oxide and formation of copper-based metal organic frameworks. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 107-111	13	20
1301	Hierarchical Uniform Supramolecular Conjugated Spherulites with Suppression of Defect Emission. <i>IScience</i> , 2019 , 16, 399-409	6.1	20
1300	Preparation of Highly Dispersed Reduced Graphene Oxide Decorated with Chitosan Oligosaccharide as Electrode Material for Enhancing the Direct Electron Transfer of Escherichia coli. <i>ACS Applied Materials & Direct Electron Transfer of Escherichia</i>	9.5	20
1299	Fluorination Triggered New Small Molecule Donor Materials for Efficient As-Cast Organic Solar Cells. <i>Small</i> , 2018 , 14, e1801542	11	20
1298	Larger Eextended anti-/syn-aroylenediimidazole polyaromatic compounds: synthesis, physical properties, self-assembly, and quasi-linear conjugation effect. <i>RSC Advances</i> , 2014 , 4, 17822-17831	3.7	20
1297	Electrospray Dense Suspensions of TiO2 Nanoparticles for Dye Sensitized Solar Cells. <i>Aerosol Science and Technology</i> , 2013 , 47, 1302-1309	3.4	20
1296	Effect of N2-gas flow rates on the structures and properties of copper nitride films prepared by reactive DC magnetron sputtering. <i>Vacuum</i> , 2013 , 89, 78-81	3.7	20
1295	2,1,3-Benzothiadiazole-5,6-dicarboxylicimide-Based Polymer Semiconductors for Organic Thin-Film Transistors and Polymer Solar Cells. <i>ACS Applied Materials & Description of the Color of t</i>	9.5	20
1294	Pyrene-centered cyanophenyl end-capped starbursts: design, synthesis, stabilized blue electroluminescence and lasing properties. <i>Materials Chemistry Frontiers</i> , 2017 , 1, 668-676	7.8	20
1293	Solvent and Steric Hindrance Effects of Bulky Poly(9,9-diarylfluorene)s on Conformation, Gelation, Morphology, and Electroluminescence. <i>Macromolecular Chemistry and Physics</i> , 2015 , 216, 1043-1054	2.6	20
1292	Miniature spectrometer based on diffraction in a dispersive hole array. <i>Optics Letters</i> , 2015 , 40, 3217-20)3	20

1291	Phosphorescence switch and logic gate of iridium(III) complexes containing a triarylboron moiety triggered by fluoride and an electric field. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 1883-1887	7.1	20
1290	Stable pure-blue polymer light-emitting devices based on #phase poly(9,9-dioctylfluorene) induced by 1,2-dichloroethane. <i>Applied Physics Express</i> , 2014 , 7, 101601	2.4	20
1289	Phosphorescent chemosensor for Hg2+ and acetonitrile based on iridium(III) complex. <i>Analyst, The</i> , 2012 , 137, 5398-402	5	20
1288	Spectrum-stable hyperbranched polyfluorene with photocrosslinkable group. <i>Polymer</i> , 2007 , 48, 4412-4	14,1,8	20
1287	Synthesis and characterization of poly(fluorene vinylene) copolymers containing thienylene units. <i>Journal of Applied Polymer Science</i> , 2008 , 108, 2438-2445	2.9	20
1286	Novel blue light-emitting hyperbranched polyfluorenes incorporating carbazole kinked structure. <i>European Polymer Journal</i> , 2008 , 44, 3169-3176	5.2	20
1285	Conjugated copolymers of 2-methoxy-5-2?-ethyl-hexyloxy-1,4-phenylenevinylene and 2,5-dicyano-1,4-phenylenevinylene as materials for polymer light-emitting diodes. <i>Synthetic Metals</i> , 1999 , 106, 165-170	3.6	20
1284	Halide Homogenization for High-Performance Blue Perovskite Electroluminescence. <i>Research</i> , 2020 , 2020, 9017871	7.8	20
1283	Halogen bonding in the co-crystallization of potentially ditopic diiodotetrafluorobenzene: a powerful tool for constructing multicomponent supramolecular assemblies. <i>National Science Review</i> , 2020 , 7, 1906-1932	10.8	20
1282	Conjugated Polymer Nanoparticles with Absorption beyond 1000 nm for NIR-II Fluorescence Imaging System Guided NIR-II Photothermal Therapy. <i>ACS Applied Polymer Materials</i> , 2020 , 2, 4171-4179	94.3	20
1281	High Stable, Transparent and Conductive ZnO/Ag/ZnO Nanofilm Electrodes on Rigid/Flexible Substrates. <i>Energies</i> , 2016 , 9, 443	3.1	20
1280	Supramolecular PolymerMolecule Complexes as Gain Media for Ultraviolet Lasers. <i>ACS Macro Letters</i> , 2016 , 5, 967-971	6.6	20
1279	Visualizing hydrogen peroxide in Parkinson disease models via a ratiometric NIR fluorogenic probe. <i>Sensors and Actuators B: Chemical</i> , 2019 , 279, 38-43	8.5	20
1278	Diketopyrrolopyrrole-Au(I) as singlet oxygen generator for enhanced tumor photodynamic and photothermal therapy. <i>Science China Chemistry</i> , 2020 , 63, 55-64	7.9	20
1277	Fabrication of ultra-thin 2D covalent organic framework nanosheets and their application in functional electronic devices. <i>Coordination Chemistry Reviews</i> , 2021 , 429, 213616	23.2	20
1276	Highly efficient tandem organic light-emitting devices adopting a nondoped charge-generation unit and ultrathin emitting layers. <i>Organic Electronics</i> , 2018 , 53, 353-360	3.5	20
1275	Full-solution processed all-nanowire flexible and transparent ultraviolet photodetectors. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 11666-11672	7.1	20
1274	Sc3+-induced morphology, phase structure, and upconversion luminescence evolution of YF3:Yb/Er nanocrystals. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 6450-6456	7.1	19

1273	General Metal-Ion Mediated Method for Functionalization of Graphene Fiber. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 37022-37030	9.5	19
1272	A cyclometalating organic ligand with an Iridium center toward dramatically improved photovoltaic performance in organic solar cells. <i>Chemical Communications</i> , 2019 , 55, 2640-2643	5.8	19
1271	Over 12% efficient low-bandgap CuIn(S, Se)2 solar cells with the absorber processed from aqueous metal complexes solution in air. <i>Nano Energy</i> , 2019 , 62, 818-822	17.1	19
1270	Metal Mesh as a Transparent Omnidirectional Strain Sensor. <i>Advanced Materials Technologies</i> , 2019 , 4, 1800698	6.8	19
1269	Chemically Functionalized Conjugated Oligoelectrolyte Nanoparticles for Enhancement of Current Generation in Microbial Fuel Cells. <i>ACS Applied Materials & Description of Current Acts Applied Materials & Description of Current Generation in Microbial Fuel Cells. ACS Applied Materials & Description of Current Generation in Microbial Fuel Cells. ACS Applied Materials & Description of Current Generation in Microbial Fuel Cells. ACS Applied Materials & Description of Current Generation in Microbial Fuel Cells. ACS Applied Materials & Description of Current Generation in Microbial Fuel Cells. ACS Applied Materials & Description of Current Generation in Microbial Fuel Cells. ACS Applied Materials & Description of Current Generation in Microbial Fuel Cells. ACS Applied Materials & Description of Current Generation of Current Generation in Microbial Fuel Cells. ACS Applied Materials & Description of Current Generation </i>	9.5	19
1268	Effects of Damkhler number of evaporation on the morphology of active layer and the performance of organic heterojunction solar cells fabricated by electrospray method. <i>Solar Energy Materials and Solar Cells</i> , 2015 , 134, 140-147	6.4	19
1267	Solution-Processed p-SnSe/n-SnSe Hetero-Structure Layers for Ultrasensitive NO Detection. <i>Chemistry - A European Journal</i> , 2020 , 26, 3870-3876	4.8	19
1266	Paper-based all-solid-state flexible asymmetric micro-supercapacitors fabricated by a simple pencil drawing methodology. <i>Chinese Chemical Letters</i> , 2018 , 29, 587-591	8.1	19
1265	SMART Design of a Bulk-Capped Supramolecular Segment for the Assembly into Organic Interdigital Lipid Bilayer-Like (ILB) Nanosheets. <i>Small</i> , 2018 , 14, 1703151	11	19
1264	Diketopyrrolopyrrole Derivatives Grafting Hyaluronic Acid for Targeted Photodynamic Therapy. <i>ChemistrySelect</i> , 2016 , 1, 3071-3074	1.8	19
1263	Two Silver Coordination Network Compounds with Colorful Photoluminescence. <i>Inorganic Chemistry</i> , 2016 , 55, 7954-61	5.1	19
1262	Copper(i) halide clusters based upon ferrocenylchalcogenoether ligands: donors, halides and semi-rigidity effects on the geometry and catalytic activity. <i>Dalton Transactions</i> , 2016 , 45, 1016-24	4.3	19
1261	N-Annulated perylene diimide derivatives as non-fullerene acceptors for solution-processed solar cells with an open-circuit voltage of up to 1.14 V. <i>New Journal of Chemistry</i> , 2018 , 42, 15079-15087	3.6	19
1260	Transient Light Emitting Devices Based on Soluble Polymer Composites. <i>Scientific Reports</i> , 2018 , 8, 640	18 4.9	19
1259	Selectively Investigating Molecular Configuration Effect on Blue Electrophosphorescent Host Performance through a Series of Hydrocarbon Oligomers. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 20559-20570	3.8	19
1258	Temperature dependence of resistive switching behaviors in resistive random access memory based on graphene oxide film. <i>Nanotechnology</i> , 2014 , 25, 185202	3.4	19
1257	Graphene Oxide by UV-Ozone Treatment as an Efficient Hole Extraction Layer for Highly Efficient and Stable Polymer Solar Cells. <i>ACS Applied Materials & District Research</i> , 9, 26252-26256	9.5	19
1256	Conformational Effect of Polymorphic Terfluorene on Photophysics, Crystal Morphologies, and Lasing Behaviors. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 14803-14810	3.8	19

1255	Reversible Optical and Electrical Switching of Air-Stable OFETs for Nonvolatile Multi-Level Memories and Logic Gates. <i>Advanced Electronic Materials</i> , 2015 , 1, 1500230	6.4	19
1254	Rational Design of Nanoparticles with Efficient Lanthanide Luminescence Sensitized by Iridium(III) Complex for Time-Gated Luminescence Bioimaging. <i>Advanced Optical Materials</i> , 2015 , 3, 233-240	8.1	19
1253	Synthesis, structure, photophysical and electrochemical properties of series of new fac-triscyclometallated iridium complexes with carbazole or oxadiazole moieties. <i>Inorganica Chimica Acta</i> , 2012 , 391, 50-57	2.7	19
1252	Theoretical study of organic molecules containing N or S atoms as receptors for Hg(II) fluorescent sensors. <i>Synthetic Metals</i> , 2012 , 162, 641-649	3.6	19
1251	Preparation of Weavable, All-Carbon Fibers for Non-Volatile Memory Devices. <i>Angewandte Chemie</i> , 2013 , 125, 13593-13597	3.6	19
1250	Towards Highly Substituted Starburst Macromolecular Semiconductors: Microwave Synthesis, Spectroscopy and Electrochemical Properties. <i>Macromolecular Chemistry and Physics</i> , 2011 , 212, 445-454	1 ^{2.6}	19
1249	Synthesis, photophysical and electroluminescent properties of a novel bright light-emitting Eu3+complex based on a fluorene-containing bidentate aryl phosphine oxide. <i>Synthetic Metals</i> , 2010 , 160, 2197-2202	3.6	19
1248	Tuning backbones and side-chains of cationic conjugated polymers for optical signal amplification of fluorescent DNA detection. <i>Biosensors and Bioelectronics</i> , 2009 , 24, 2973-8	11.8	19
1247	Novel photoluminescent polymers containing fluorene and 2,4,6-triphenyl pyridine moieties: Effects of noncoplanar molecular architecture on the electro-optical properties of parent matrix. <i>Polymer</i> , 2008 , 49, 4369-4377	3.9	19
1246	Monodisperse star-shaped compound and its blend in uncapped polyfluorene matrices as the active materials for high-performance pure blue light-emitting devices. <i>Applied Physics Letters</i> , 2007 , 90, 14190) § 4	19
1245	Synthesis and characterization of red phosphorescent-conjugated polymers containing charged iridium complexes and carbazole unit. <i>Synthetic Metals</i> , 2007 , 157, 813-822	3.6	19
1244	A novel approach of preparation and patterning of organic fluorescent nanomaterials. <i>Chemical Physics Letters</i> , 2006 , 420, 480-483	2.5	19
1243	A novel rigid-rod alternating poly(p-phenylenevinylene) derivative with oligo(ethylene oxide) side chains. <i>Polymer</i> , 2001 , 42, 3929-3938	3.9	19
1242	Synthesis and characterization of a novel blue electroluminescent polymer constituted of alternating carbazole and aromatic oxadiazole units. <i>Physical Chemistry Chemical Physics</i> , 1999 , 1, 3123-3	3127	19
1241	Carbon Nanoarrays Embedded with Metal Compounds for High-Performance Flexible Supercapacitors. <i>Batteries and Supercaps</i> , 2020 , 3, 93-100	5.6	19
1240	Treatment-dependent surface chemistry and gas sensing behavior of the thinnest member of titanium carbide MXenes. <i>Nanoscale</i> , 2020 , 12, 16987-16994	7.7	19
1239	Targeted polymer-based antibiotic delivery system: A promising option for treating bacterial infections via macromolecular approaches. <i>Progress in Polymer Science</i> , 2021 , 116, 101389	29.6	19
1238	Multi-Functional Liposome: A Powerful Theranostic Nano-Platform Enhancing Photodynamic Therapy. <i>Advanced Science</i> , 2021 , 8, e2100876	13.6	19

1237	Synthesis of 42-faceted bismuth vanadate microcrystals for enhanced photocatalytic activity. Journal of Colloid and Interface Science, 2019 , 542, 207-212	9.3	19
1236	A fluorescent Eu(III) MOF for highly selective and sensitive sensing of picric acid. <i>Science China Chemistry</i> , 2019 , 62, 205-211	7.9	19
1235	Extending Hypochlorite Sensing from Cells to Elesclomol-Treated Tumors in Vivo by Using a Near-Infrared Dual-Phosphorescent Nanoprobe. <i>ACS Applied Materials & Dual-Phosphorescent</i> , 10, 3583	8 ⁹ 3584	16 ¹⁹
1234	Carbene-Catalyzed Construction of Carbazoles from Enals and 2-Methyl-3-oxoacetate Indoles. Journal of Organic Chemistry, 2018 , 83, 14210-14217	4.2	19
1233	Light-induced degradation of fullerenes in organic solar cells: a case study on TQ1:PC71BM. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 11884-11889	13	19
1232	Ultrasensitive detection of trypsin activity and inhibitor screening based on the electron transfer between phosphorescence copper nanocluster and cytochrome c. <i>Talanta</i> , 2018 , 189, 92-99	6.2	19
1231	Nanoparticulation of Prodrug into Medicines for Cancer Therapy. <i>Advanced Science</i> , 2021 , 8, e2101454	13.6	19
1230	Amphiphilic conjugated molecules with multifunctional properties as efficient blue emitters and cathode interlayers for inkjet printed organic light-emitting diodes. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 7075-7083	7.1	18
1229	Understanding the molecular gelation processes of heteroatomic conjugated polymers for stable blue polymer light-emitting diodes. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 6762-6770	7.1	18
1228	Excimer-based white electroluminescence from supramolecular bulk effects of dumbbell-shaped molecules via attractor-repulsor molecular design. <i>Organic Electronics</i> , 2017 , 43, 87-95	3.5	18
1227	Progress in fluorene-based wide-bandgap steric semiconductors. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2017 , 35, 155-170	3.5	18
1226	Bromine-Terminated Additives for Phase-Separated Morphology Control of PTB7:PC71BM-Based Polymer Solar Cells. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 11668-11675	8.3	18
1225	Mitochondria-localized iridium(III) complexes with anthraquinone groups as effective photosensitizers for photodynamic therapy under hypoxia. <i>Science China Chemistry</i> , 2019 , 62, 1639-164	8 7·9	18
1224	Precisely controlling fluorescence enhancement and high-contrast colorimetric assay in OFF-ON fluoride sensing based on a diketopyrrolopyrrole boronate ester. <i>Dyes and Pigments</i> , 2019 , 170, 107638	₃ 4.6	18
1223	Highly efficient organic-inorganic hybrid perovskite quantum dot/nanocrystal light-emitting diodes using graphene electrode and modified PEDOT:PSS. <i>Organic Electronics</i> , 2019 , 72, 30-38	3.5	18
1222	Efficient Quantum Dot Light-Emitting Diodes Based on Trioctylphosphine Oxide-Passivated Organometallic Halide Perovskites. <i>ACS Omega</i> , 2019 , 4, 9150-9159	3.9	18
1221	Fluorescent oligo(p-phenyleneethynylene) contained amphiphiles-encapsulated magnetic nanoparticles for targeted magnetic resonance and two-photon optical imaging in vitro and in vivo. <i>Nanoscale</i> , 2015 , 7, 8907-19	7.7	18
1220	Molecularly designed N, S co-doped carbon nanowalls decorated on graphene as a highly efficient sulfur reservoir for LiB batteries: a supramolecular strategy. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 5449-5457	13	18

1219	Systematic investigation of self-organization behavior in supramolecular Econjugated polymer for multi-color electroluminescence. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 1535-1542	7.1	18
1218	Long-Term Homeostatic Properties Complementary to Hebbian Rules in CuPc-Based Multifunctional Memristor. <i>Scientific Reports</i> , 2016 , 6, 35273	4.9	18
1217	Novel self-assembled natural graphite based composite anodes with improved kinetic properties in lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 9865-9872	13	18
1216	Solution-processable zinc oxide nanorods and a reduced graphene oxide hybrid nanostructure for highly flexible and stable memristor. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 10764-10768	7.1	18
1215	Plasmonic-enhanced polymer photovoltaic cells based on Au nanoparticles with wide absorption spectra of 300d 000 nm. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 9303-9310	7.1	18
1214	Tetragonally compressed high-spin Mn(III) Schiff base complex: Synthesis, crystal structure, magnetic properties and theoretical calculations. <i>Polyhedron</i> , 2013 , 52, 1199-1205	2.7	18
1213	A large perturbation on geometry structures, excited state properties, charge-injection and -transporting abilities of Ir(III) complexes by different substituents on ligands: a DFT/TDDFT study. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 18497-506	3.6	18
1212	Effects of Temperature and Solvent on the Energy Transfer and ₱hase Formation in the Iridium(III) Complex-Containing Polyfluorene in Solutions and as Suspended Nano-Particles. <i>Macromolecular Rapid Communications</i> , 2010 , 31, 629-33	4.8	18
1211	Controllable synthesis and magnetic property of BiMn2O5 crystals. <i>Materials Research Bulletin</i> , 2008 , 43, 1702-1708	5.1	18
121 0	Temperature-dependent photoluminescence of organic light-emitting materials: Types and characteristics of excitons involved in the emitting process. <i>Chemical Physics Letters</i> , 2006 , 420, 347-353	2.5	18
1209	Synthesis and characterization of naphthyl-substituted poly(p-phenylenevinylene)s with few structural defects for polymer light-emitting diodes. <i>Journal of Polymer Science Part A</i> , 2004 , 42, 1647-1	657	18
1208	An efficient fluorescent chemosensor for Mg2+: selective and high sensitive. <i>Thin Solid Films</i> , 2002 , 417, 198-201	2.2	18
1207	Conformational analysis (ab initio HF/3-21G*) and optical properties of poly(thiophene-phenylene-thiophene) (PTPT). <i>Chemical Physics Letters</i> , 2002 , 363, 18-24	2.5	18
1206	Image storage based on biphotonic holography in azo/polymer system. <i>Applied Physics Letters</i> , 1998 , 72, 418-420	3.4	18
1205	Single-component color-tunable circularly polarized organic afterglow through chiral clusterization <i>Nature Communications</i> , 2022 , 13, 429	17.4	18
1204	Progress of Research on Organic/Organometallic Mechanoluminescent Materials. <i>Acta Chimica Sinica</i> , 2018 , 76, 246	3.3	18
1203	Ladder-type poly(indenofluorene-co-benzothiadiazole)s as efficient gain media for organic lasers: design, synthesis, optical gain properties, and stabilized lasing properties. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 6629-6639	7.1	18
1202	Highly efficient inverted organic light-emitting devices adopting solution-processed double electron-injection layers. <i>Organic Electronics</i> , 2019 , 66, 1-6	3.5	18

1201	Capacitance methodology for investigating defect states in energy gap of organic semiconductor. Organic Electronics, 2019 , 65, 275-299	3.5	18
1200	Stability improvement in flexible low-voltage organic field-effect transistors with complementary polymeric dielectrics. <i>Organic Electronics</i> , 2019 , 65, 259-265	3.5	18
1199	3D Wearable Fabric-Based Micro-Supercapacitors with Ultra-High Areal Capacitance. <i>Advanced Functional Materials</i> ,2107484	15.6	18
1198	Recent advances and challenges of inverted lead-free tin-based perovskite solar cells. <i>Energy and Environmental Science</i> ,	35.4	18
1197	C-H Direct Arylated 6H-Indolo[2,3-b]quinoxaline Derivative as a Thickness-Dependent Hole-Injection Layer. <i>Chemistry - an Asian Journal</i> , 2017 , 12, 920-926	4.5	17
1196	Ladder-type oligo(p-phenylene)s with DA architectures: design, synthesis, optical gain properties, and stabilized amplified spontaneous emission. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 5797-5809	7.1	17
1195	One-step and green synthesis of nitrogen-doped carbon quantum dots for multifunctional electronics. <i>RSC Advances</i> , 2017 , 7, 21969-21973	3.7	17
1194	Isomeric N-Linked Benzoimidazole Containing New Electron Acceptors for Exciplex Forming Hosts in Highly Efficient Blue Phosphorescent OLEDs. <i>Advanced Optical Materials</i> , 2017 , 5, 1700036	8.1	17
1193	Three dimensional multi-arm acceptors based on diketopyrrolopyrrole with (hetero)aromatic cores for non-fullerene organic solar cells without additional treatment. <i>Dyes and Pigments</i> , 2017 , 139, 412-4	1 9 .6	17
1192	1,3,4-Oxadiazole-based Deep Blue Thermally Activated Delayed Fluorescence Emitters for Organic Light Emitting Diodes. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 24772-24785	3.8	17
1191	Reversible two-channel mechanochromic luminescence for a pyridinium-based white-light emitter with room-temperature fluorescence-phosphorescence dual emission. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 14728-14733	3.6	17
1190	Hyaluronic Acid Nanoparticles Based on a Conjugated Oligomer Photosensitizer: Target-Specific Two-Photon Imaging, Redox-Sensitive Drug Delivery, and Synergistic Chemo-Photodynamic Therapy ACS Applied Bio Materials, 2019, 2, 2421-2434	4.1	17
1189	Stable and self-healable LbL coating with antibiofilm efficacy based on alkylated polyethyleneimine micelles. <i>Journal of Materials Chemistry B</i> , 2019 , 7, 3865-3875	7.3	17
1188	Conjugated Polymer Nanoparticles for Label-Free and Bioconjugate-Recognized DNA Sensing in Serum. <i>Advanced Science</i> , 2015 , 2, 1400009	13.6	17
1187	Controlled Synthesis of Uniform NaxScF3+x Nanopolyhedrons, Nanoplates, Nanorods, and Nanospheres Using Solvents. <i>Crystal Growth and Design</i> , 2015 , 15, 2988-2993	3.5	17
1186	A photo-stable and electrochemically stable poly(dumbbell-shaped molecules) for blue electrophosphorescent host materials. <i>Polymer Chemistry</i> , 2015 , 6, 983-988	4.9	17
1185	Surface-Plasmon-Enhanced Perovskite Light-Emitting Diodes. Small, 2020, 16, e2001861	11	17
1184	Rational design of semiconducting polymer brushes as cancer theranostics. <i>Materials Horizons</i> , 2020 , 7, 1474-1494	14.4	17

(2015-2020)

1183	Polydatin protects SH-SY5Y in models of Parkinson's disease by promoting Atg5-mediated but parkin-independent autophagy. <i>Neurochemistry International</i> , 2020 , 134, 104671	4.4	17	
1182	An Au@Ag nanocube based plasmonic nano-sensor for rapid detection of sulfide ions with high sensitivity <i>RSC Advances</i> , 2018 , 8, 5792-5796	3.7	17	
1181	A universal solution-processable bipolar host based on triphenylamine and pyridine for efficient phosphorescent and thermally activated delayed fluorescence OLEDs. <i>Journal of Luminescence</i> , 2018 , 199, 465-474	3.8	17	
1180	Optimizing the Intralayer and Interlayer Compatibility for High-Efficiency Blue Thermally Activated Delayed Fluorescence Diodes. <i>Scientific Reports</i> , 2016 , 6, 19904	4.9	17	
1179	Pyrene-capped starburst emitters as gain media for organic lasers: design, synthesis, and stabilized lasing properties. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 7546-7553	7.1	17	
1178	Enhancing hydrophilicity of photoacoustic probes for effective ratiometric imaging of hydrogen peroxide. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 4531-4538	7.3	17	
1177	A flexible SERS-active film for studying the effect of non-metallic nanostructures on Raman enhancement. <i>Nanoscale</i> , 2018 , 10, 16895-16901	7.7	17	
1176	Unconventional solution-phase epitaxial growth of organic-inorganic hybrid perovskite nanocrystals on metal sulfide nanosheets. <i>Science China Materials</i> , 2019 , 62, 43-53	7.1	17	
1175	AgCO-Catalyzed H/D Exchange of Five-Membered Heteroarenes at Ambient Temperature. <i>Organic Letters</i> , 2019 , 21, 6745-6749	6.2	17	
1174	Facile preparation of multicolor polymer nanoparticle bioconjugates with specific biorecognition. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 11129-35	9.5	17	
1173	Universal Strategy for Cheap and Color-Stable Single-EML WOLEDs Utilizing Two Complementary-Color Nondoped Emitters without Energy Transfer. <i>Advanced Optical Materials</i> , 2014 , 2, 938-944	8.1	17	
1172	Proton-transfer supramolecular salts of d-/l-tartaric acid and 1-(2-Pyrimidyl)piperazine. <i>Journal of Molecular Structure</i> , 2014 , 1062, 61-67	3.4	17	
1171	Bipolar luminescent materials containing pyrimidine terminals: synthesis, photophysical properties and a theoretical study. <i>RSC Advances</i> , 2013 , 3, 21877	3.7	17	
1170	Inhomogeneous degradation in metal halide perovskites. <i>Applied Physics Letters</i> , 2017 , 111, 073302	3.4	17	
1169	Stimuli-responsive circularly polarized luminescence from an achiral perylenyl dyad. <i>Organic and Biomolecular Chemistry</i> , 2017 , 15, 8463-8470	3.9	17	
1168	Controlled Synthesis, Evolution Mechanisms, and Luminescent Properties of ScFx:Ln (x = 2.76, 3) Nanocrystals. <i>Chemistry of Materials</i> , 2017 , 29, 9758-9766	9.6	17	
1167	Cyclometalated Pt complex-based random terpolymers for efficient polymer solar cells. <i>Polymer Chemistry</i> , 2017 , 8, 4729-4737	4.9	17	
1166	A Theoretical Insight into the Mechanism of Cu(I)-Catalyzed C?N Coupling between Aryl Halides and Aqueous Ammonia. <i>Chinese Journal of Chemistry</i> , 2015 , 33, 961-966	4.9	17	

1165	Parallel near-field photolithography with metal-coated elastomeric masks. <i>Langmuir</i> , 2015 , 31, 1210-7	4	17
1164	Organic thin-film solar cells: Devices and materials. <i>Science China Chemistry</i> , 2012 , 55, 553-578	7.9	17
1163	The influence of the linkage pattern on the optoelectronic properties of polysilafluorenes: a theoretical study. <i>Journal of Physical Chemistry B</i> , 2011 , 115, 242-8	3.4	17
1162	Blue top-emitting organic light-emitting devices based on wide-angle interference enhancement and suppression of multiple-beam interference. <i>Organic Electronics</i> , 2011 , 12, 322-328	3.5	17
1161	Formation of CdS nanoparticles in mixed cationic-anionic surfactant vesicle system. <i>Materials Chemistry and Physics</i> , 1997 , 49, 87-92	4.4	17
1160	A theoretical study on the isomerization of cyclopropane to propene with ab initio and DFT methods. <i>Chemical Physics Letters</i> , 1997 , 277, 257-263	2.5	17
1159	Synthesis and characterization of cross-shaped pl diblock oligomers. <i>Journal of Polymer Science Part A</i> , 2007 , 45, 1066-1073	2.5	17
1158	Blue top-emitting organic light-emitting devices using a 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline outcoupling layer. <i>Organic Electronics</i> , 2008 , 9, 1112-11	1 7 .5	17
1157	Solvothermal synthesis and magnetic properties of pyrite Co1\(\text{PexS2} \) with various morphologies. Materials Letters, 2006 , 60, 1805-1808	3.3	17
1156	Novel Photo-Crosslinkable Light-Emitting Rod/Coil Copolymers: Underlying Facile Material for Fabricating Pixelated Displays. <i>Macromolecular Rapid Communications</i> , 2006 , 27, 1779-1786	4.8	17
1155	Synthesis of InAs nanowires via a low-temperature solvothermal route. <i>Nanotechnology</i> , 2006 , 17, 3416	5-304	17
1154	Two-photon absorption of new multibranched chromophore with dibenzothiophene core. <i>Chemical Physics Letters</i> , 2006 , 424, 333-339	2.5	17
1153	Synthesis, structural characterization, photoluminescence and thermal properties of [(Ph3P)2Cu(EGeC{O}R)2Cu(PPh3)]. <i>New Journal of Chemistry</i> , 2002 , 26, 1122-1129	3.6	17
1152	Organic photoresponsive materials for information storage: a review. <i>Advanced Photonics</i> , 2020 , 3,	8.1	17
1151	Recent Advances in Two-Dimensional Magnets: Physics and Devices towards Spintronic Applications. <i>Research</i> , 2020 , 2020, 1768918	7.8	17
1150	Recent Progress of Host Materials for Highly Efficient Blue Phosphorescent OLEDs. <i>Acta Chimica Sinica</i> , 2015 , 73, 9	3.3	17
1149	Circularly Polarized Organic Room Temperature Phosphorescence from Amorphous Copolymers. Journal of the American Chemical Society, 2021 , 143, 18527-18535	16.4	17
1148	Efficient Liquid Nitrogen Exfoliation of MoS2 Ultrathin Nanosheets in the Pure 2H Phase. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 84-90	8.3	17

1147	A Thienyl-Substituted Diketopyrrolopyrrole Derivative with Efficient Reactive Oxygen Species Generation for Photodynamic Therapy. <i>ChemPlusChem</i> , 2016 , 81, 515-520	2.8	17
1146	A Monochloro Copper Phthalocyanine Memristor with High-Temperature Resilience for Electronic Synapse Applications. <i>Advanced Materials</i> , 2021 , 33, e2006201	24	17
1145	Recent Advances in van der Waals Heterojunctions Based on Semiconducting Transition Metal Dichalcogenides. <i>Advanced Electronic Materials</i> , 2018 , 4, 1800270	6.4	17
1144	Improved Efficiency of Inverted Perovskite Solar Cells Via Surface Plasmon Resonance Effect of Au@PSS Core-Shell Tetrahedra Nanoparticles. <i>Solar Rrl</i> , 2018 , 2, 1800061	7.1	17
1143	Star-Shaped Boron-Containing Asymmetric Host Materials for Solution-Processable Phosphorescent Organic Light-Emitting Diodes. <i>Advanced Science</i> , 2018 , 5, 1800292	13.6	17
1142	Spiro-Functionalized Polyfluorene Derivatives as Blue Light-Emitting Materials 2000 , 12, 828		17
1141	Floating-gate nanofibrous electret arrays for high performance nonvolatile organic transistor memory devices. <i>Organic Electronics</i> , 2017 , 49, 218-225	3.5	16
1140	Direct construction of carbazoles from 2-methyl-indole-3-carbaldehydes and enals. <i>Green Chemistry</i> , 2019 , 21, 968-972	10	16
1139	Tuning Long-Lived Mn(II) Upconversion Luminescence through Alkaline-Earth Metal Doping and Energy-Level Tailoring. <i>Advanced Optical Materials</i> , 2019 , 7, 1900519	8.1	16
1138	A feasible strategy for the fabrication of camouflage electrochromic fabric and unconventional devices. <i>Electrochemistry Communications</i> , 2019 , 102, 31-36	5.1	16
1137	Hybrid Rhodamine Fluorophores in the Visible/NIR Region for Biological Imaging. <i>Angewandte Chemie</i> , 2019 , 131, 14164-14181	3.6	16
1136	Dumbbell effects of solution-processed pyrene-based organic semiconductors on electronic structure, morphology and electroluminescence. <i>Synthetic Metals</i> , 2015 , 200, 135-142	3.6	16
1135	A new V-shaped triphenylamine/diketopyrrolopyrrole containing donor material for small molecule organic solar cells. <i>RSC Advances</i> , 2015 , 5, 68192-68199	3.7	16
1134	Ternary donor donor for phosphine oxide hosts with peculiar high energy gap for efficient blue electroluminescence. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 9469-9478	7.1	16
1133	Spiro[fluorene-9,9?-xanthene]-based universal hosts for understanding structureproperty relationships in RGB and white PhOLEDs. <i>RSC Advances</i> , 2015 , 5, 29828-29836	3.7	16
1132	Hydrophilic Ultralong Organic Nanophosphors. <i>Small</i> , 2020 , 16, e1906733	11	16
1131	10.3% Efficient CuIn(S,Se)2 Solar Cells from DMF Molecular Solution with the Absorber Selenized under High Argon Pressure. <i>Solar Rrl</i> , 2018 , 2, 1800044	7.1	16
1130	Novel electron acceptor based on spiro[fluorine-9,9?-xanthene] for exciplex thermally activated delayed fluorescence. <i>Dyes and Pigments</i> , 2018 , 149, 422-429	4.6	16

1129	Engineering the Li Storage Properties of Graphene Anodes: Defect Evolution and Pore Structure Regulation. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 33712-33722	9.5	16
1128	Physics of intrinsic point defects in bismuth oxychalcogenides: A first-principles investigation. Journal of Applied Physics, 2018 , 124, 055701	2.5	16
1127	Understanding the mechanism of PEDOT: PSS modification via solvent on the morphology of perovskite films for efficient solar cells. <i>Synthetic Metals</i> , 2018 , 243, 17-24	3.6	16
1126	A glutathione responsive pyrrolopyrrolidone nanotheranostic agent for turn-on fluorescence imaging guided photothermal/photodynamic cancer therapy. <i>Materials Chemistry Frontiers</i> , 2019 , 3, 2	14 3 -215	50 ¹⁶
1125	Prussian blue hollow nanostructures: Sacrificial template synthesis and application in hydrogen peroxide sensing. <i>Journal of Electroanalytical Chemistry</i> , 2014 , 712, 132-138	4.1	16
1124	Efficiency enhancement in P3HT-based polymer solar cells with a NaYF4:2% Er3+, 18% Yb3+ up-converter. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 5872	7.1	16
1123	Hindrance-functionalized Estacked polymer based on polystyrene with pendent cardo groups for organic electronics. <i>Polymer Chemistry</i> , 2013 , 4, 2540	4.9	16
1122	S-Doped TiSe Nanoplates/Fe O Nanoparticles Heterostructure. <i>Small</i> , 2017 , 13, 1702181	11	16
1121	Co-crystallization of 1,3,5-trifluoro-2,4,6-triiodobenzene (1,3,5-TFTIB) with a variety of Lewis bases through halogen-bonding interactions. <i>CrystEngComm</i> , 2017 , 19, 5504-5521	3.3	16
1120	Ladder-type conjugated oligomers prepared by the Scholl oxidative cyclodehydrogenation reaction: synthesis, characterization and application in field effect transistors. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 6200-6208	7.1	16
1119	Pyrenyl-Capped Benzofiurene Derivatives: Synthesis, Characterization, and the Effects of Flexible Side Chains on Modulating the Optoelectronic Properties. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 28117-28126	3.8	16
1118	Recent Advances in Multicolor Emission and Color Tuning of Heteroleptic Iridium Complexes. <i>Israel Journal of Chemistry</i> , 2014 , 54, 885-896	3.4	16
1117	Highly sensitive detection of DNA-binding proteins based on a cationic conjugated polymervia a target-mediated fluorescence resonance energy transfer (TMFRET) strategy. <i>Polymer Chemistry</i> , 2012 , 3, 703	4.9	16
1116	Graphene/Carbon Nanotube Films Prepared by Solution Casting for Electrochemical Energy Storage. <i>IEEE Nanotechnology Magazine</i> , 2012 , 11, 3-7	2.6	16
1115	Macroporous foam of reduced graphene oxides prepared by lyophilization. <i>Materials Research Bulletin</i> , 2012 , 47, 4335-4339	5.1	16
1114	First-principles study of rectification in bis-2-(5-ethynylthienyl)ethyne molecular junctions. <i>Journal of Physical Chemistry A</i> , 2011 , 115, 9033-42	2.8	16
1113	Field Emission From Hydrothermally Grown ZnO Nanoinjectors. <i>Journal of Display Technology</i> , 2008 , 4, 9-12		16
1112	Bright electroluminescence from a chelate phosphine oxide EuIII complex with high thermal performance. <i>Thin Solid Films</i> , 2008 , 516, 8487-8492	2.2	16

1111	High-quantum-efficiency erbium-doped optical fiber and the effective deactivator. <i>Applied Physics Letters</i> , 2004 , 85, 1910-1912	3.4	16	
1110	Characterization of fluoropolymer films deposited by magnetron sputtering of poly(tetrafluoroethylene) and plasma polymerization of heptadecafluoro-1-decene (HDFD) on (100)-oriented single-crystal silicon substrates. <i>Surface and Interface Analysis</i> , 2002 , 34, 10-18	1.5	16	
1109	Conformational analysis on biphenyls with theoretical calculations: modeling torsions in poly(para-phenylene)s with side chains. <i>Thin Solid Films</i> , 2000 , 363, 1-5	2.2	16	
1108	Poly(1,4-bis[2-(4-hexylthiophene)]-2,5-dimethylphenylene): a new conjugated electroluminescent polymer. <i>Synthetic Metals</i> , 1999 , 105, 43-47	3.6	16	
1107	Extended Naphthalene Diimide Derivatives for n-Type Semiconducting Polymers. <i>Chemistry of Materials</i> , 2020 , 32, 5317-5326	9.6	16	
1106	Stimuli-Responsive Circularly Polarized Organic Ultralong Room Temperature Phosphorescence. <i>Angewandte Chemie</i> , 2020 , 132, 4786-4792	3.6	16	
1105	Efficient Polysulfide-Based Nanotheranostics for Triple-Negative Breast Cancer: Ratiometric Photoacoustics Monitored Tumor Microenvironment-Initiated H S Therapy. <i>Small</i> , 2020 , 16, e2002939	11	16	
1104	Toward See-Through Optoelectronics: Transparent Light-Emitting Diodes and Solar Cells. <i>Advanced Optical Materials</i> , 2020 , 8, 2001122	8.1	16	
1103	Alcohol-Mediated Resistance-Switching Behavior in Metal©rganic Framework-Based Electronic Devices. <i>Angewandte Chemie</i> , 2016 , 128, 9030-9034	3.6	16	
1102	Direct siliconflitrogen bonded host materials with enhanced Lonjugation for blue phosphorescent organic light-emitting diodes. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 10047-10052	7.1	16	
1101	A cathode for Li-ion batteries made of vanadium oxide on vertically aligned carbon nanotube arrays/graphene foam. <i>Chemical Engineering Journal</i> , 2019 , 359, 1668-1676	14.7	16	
1100	Fast response two-photon fluorogenic probe based on Schiff base derivatives for monitoring nitric oxide levels in living cells and zebrafish. <i>Chemical Communications</i> , 2018 , 54, 13491-13494	5.8	16	
1099	NIR-II fluorescence imaging guided tumor-specific NIR-II photothermal therapy enhanced by starvation mediated thermal sensitization strategy. <i>Biomaterials</i> , 2021 , 275, 120935	15.6	16	
1098	Ultralong Organic Phosphorescent Foams with High Mechanical Strength. <i>Journal of the American Chemical Society</i> , 2021 , 143, 16256-16263	16.4	16	
1097	Fluorine-induced aggregate-interlocking for color-tunable organic afterglow with a simultaneously improved efficiency and lifetime. <i>Chemical Science</i> , 2021 , 12, 3580-3586	9.4	16	
1096	Amphiphilic semiconducting oligomer for single NIR laser induced photothermal/photodynamic combination therapy. <i>Dyes and Pigments</i> , 2019 , 170, 107664	4.6	15	
1095	Lysosome-specific sensing and imaging of pH variations in vitro and in vivo utilizing a near-infrared boron complex. <i>Journal of Materials Chemistry B</i> , 2019 , 7, 3569-3575	7.3	15	
1094	A novel pyrimidine based deep-red fluorogenic probe for detecting hydrogen peroxide in Parkinson's disease models. <i>Talanta</i> , 2019 , 199, 628-633	6.2	15	

1093	A reversible and highly selective phosphorescent sensor for Hg2+ based on iridium (III) complex. <i>Tetrahedron</i> , 2015 , 71, 9366-9370	2.4	15
1092	Surfactant effect on and luminescence tuning of lanthanide-doped ScPO412H2O microparticles. Journal of Materials Chemistry C, 2015 , 3, 12385-12389	7.1	15
1091	Conductive Ni3(HITP)2 MOFs thin films for flexible transparent supercapacitors with high rate capability. <i>Science Bulletin</i> , 2020 , 65, 1803-1811	10.6	15
1090	Structure Design of Nito Hydroxide Nanoarrays with Facet Engineering on Carbon Chainlike Nanofibers for High-Efficiency Oxygen Evolution. <i>ACS Applied Energy Materials</i> , 2020 , 3, 6240-6248	6.1	15
1089	Passivating Charged Defects with 1,6-Hexamethylenediamine To Realize Efficient and Stable Tin-Based Perovskite Solar Cells. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 16289-16299	3.8	15
1088	Hydrophilic nano-porous carbon derived from egg whites for highly efficient capacitive deionization. <i>Applied Surface Science</i> , 2020 , 512, 145740	6.7	15
1087	Solution-Processed Sensing Textiles with Adjustable Sensitivity and Linear Detection Range Enabled by Twisting Structure. <i>ACS Applied Materials & Detection Range Sensitivity and Linear Detection Range Enabled by Twisting Structure. ACS Applied Materials & Detection Range R</i>	9.5	15
1086	Rapid Microwave-Annealing Process of Hybrid Perovskites to Eliminate Miscellaneous Phase for High Performance Photovoltaics. <i>Advanced Science</i> , 2020 , 7, 2000480	13.6	15
1085	Selenide-containing organic resonance molecules as turn-on fluorescent probes for the selective detection of hypochlorous acid. <i>Chemical Communications</i> , 2018 , 54, 2926-2929	5.8	15
1084	Zero- and two-dimensional hybrid carbon phosphors for high colorimetric purity white light-emission. <i>Nanoscale</i> , 2018 , 10, 4189-4193	7.7	15
1083	N, P Co-doped Hierarchical Porous Graphene as a Metal-Free Bifunctional Air Cathode for ZnAir Batteries. <i>ChemElectroChem</i> , 2018 , 5, 1811-1816	4.3	15
1082	Diameter engineering on TiO2 nanorod arrays for improved hole-conductor-free perovskite solar cells. <i>Solar Energy</i> , 2018 , 166, 42-49	6.8	15
1081	Heavy metal complex containing organic/polymer materials for bulk-heterojunction photovoltaic devices. <i>Chinese Chemical Letters</i> , 2016 , 27, 1250-1258	8.1	15
1080	3D-Encapsulated iridium-complexed nanophosphors for highly efficient host-free organic light-emitting diodes. <i>Chemical Communications</i> , 2016 , 52, 5183-6	5.8	15
1079	Reduced Graphene Oxide Electrodes with Wrinkled Surface for Nonvolatile Polymer Memory Device Compatibility. <i>Small Methods</i> , 2018 , 2, 1800048	12.8	15
1078	Diindolotriazatruxene-Based Hole-Transporting Materials for High-Efficiency Planar Perovskite Solar Cells. <i>ACS Applied Materials & Emp; Interfaces</i> , 2019 , 11, 45717-45725	9.5	15
1077	Phosphorescent Iridium(III) Complexes for Bioimaging. Structure and Bonding, 2014, 131-180	0.9	15
1076	A solution-processable triphenylamine-fluorene host for exciplex based white phosphorescent organic light-emitting diodes. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 9754-9759	7.1	15

(2006-2014)

1075	Manipulating charge transport in a Estacked polymer through silicon incorporation. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 6946-6953	7.1	15	
1074	Flexible top-emitting warm-white organic light-emitting diodes with highly luminous performances and extremely stable chromaticity. <i>Organic Electronics</i> , 2014 , 15, 1465-1475	3.5	15	
1073	Crystal polymorphism and enhanced dielectric performance of composite nanofibers of poly(vinylidene fluoride) with silver nanoparticles. <i>Journal of Applied Polymer Science</i> , 2013 , 128, 1004-1005.	d18	15	
1072	Chemoselective reduction of graphene oxide and its application in nonvolatile organic transistor memory devices. <i>RSC Advances</i> , 2013 , 3, 25788	3.7	15	
1071	A water-stable metal-organic framework as a luminescent Fe3+ sensor under weak acidic and weak basic conditions. <i>Science China Chemistry</i> , 2017 , 60, 1581-1587	7.9	15	
1070	Optical properties and mechanofluorochromism of new BODIPY dyes based on the pyridine-pyrimidine hybrid structure. <i>Dalton Transactions</i> , 2017 , 46, 10332-10338	4.3	15	
1069	A Yellow-Emitting Homoleptic Iridium(III) Complex Constructed from a Multifunctional Spiro Ligand for Highly Efficient Phosphorescent Organic Light-Emitting Diodes. <i>Inorganic Chemistry</i> , 2017 , 56, 8397-8	854107	15	
1068	An Improved Turn-On Aptasensor for Thrombin Detection Using Split Aptamer Fragments and Graphene Oxide. <i>Chinese Journal of Chemistry</i> , 2015 , 33, 981-986	4.9	15	
1067	A plasmonic nanosensor for lipase activity based on enzyme-controlled gold nanoparticles growth in situ. <i>Nanoscale</i> , 2015 , 7, 6039-44	7.7	15	
1066	Surfactant-assisted encapsulation of uniform SnO 2 nanoparticles in graphene layers for high-performance Li-storage. <i>2D Materials</i> , 2015 , 2, 014005	5.9	15	
1065	Studies on shallow traps in Li2B4O7:Eu,Mn. <i>Radiation Measurements</i> , 2014 , 63, 26-31	1.5	15	
1064	A highly selective and ratiometric sensor for Hg2+ based on a phosphorescent iridium (III) complex. <i>Inorganic Chemistry Communication</i> , 2012 , 22, 178-181	3.1	15	
1063	Conjugated Polymer with On-Chain Pt(II) Complex for Resistive Random-Access Memory Device. <i>Macromolecular Chemistry and Physics</i> , 2012 , 213, 2472-2478	2.6	15	
1062	Improving spectral response of monocrystalline silicon photovoltaic modules using high efficient luminescent down-shifting Eu3+ complexes. <i>Progress in Photovoltaics: Research and Applications</i> , 2012 , 21, n/a-n/a	6.8	15	
1061	Highly efficient and stable blue-light-emitting binaphthol-fluorene copolymers: A joint experimental and theoretical study of the main-chain chirality. <i>Journal of Polymer Science Part A</i> , 2010 , 48, 3868-3879	2.5	15	
1060	Semiconductor Nanocomposites of Emissive Flexible Random Copolymers and CdTe Nanocrystals: Preparation, Characterization, and Optoelectronic Properties. <i>Macromolecular Chemistry and Physics</i> , 2007 , 208, 2007-2017	2.6	15	
1059	Morphology and photophysical properties of a thermally responsive fluorescent material based on a rod-coil tri-block copolymer. <i>Journal of Applied Polymer Science</i> , 2008 , 110, 18-22	2.9	15	
1058	Sonochemical synthesis of novel blue-emissive, water-soluble, cationic polysilanes as fluorescent sensors. <i>Journal of Polymer Science Part A</i> , 2006 , 44, 3513-3525	2.5	15	

1057	Para-linked and meta-linked cationic water-soluble fluorene-containing poly(aryleneethynylene)s: Conformational changes and their effects on ironBulfur protein detection. <i>Journal of Polymer Science Part A</i> , 2006 , 44, 5424-5437	2.5	15
1056	Preparation and electrochemical properties of organicIhorganic hybrids with the use of alkylammonium or alkylviologen cations and polyoxometalate anions. <i>Colloids and Surfaces A:</i> Physicochemical and Engineering Aspects, 2004 , 248, 85-91	5.1	15
1055	Influence of donor and acceptor substituents on the electronic characteristics of poly(fluorenephenylene). <i>Thin Solid Films</i> , 2002 , 417, 194-197	2.2	15
1054	A novel conjugated polymer containing alternating p- and n-type moieties with balanced properties of conducting holes and electrons. <i>Macromolecular Rapid Communications</i> , 2000 , 21, 897-900	4.8	15
1053	Organic Resonance Materials: Molecular Design, Photophysical Properties, and Optoelectronic Applications. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 7739-7754	6.4	15
1052	Stacking-Engineered Heterostructures in Transition Metal Dichalcogenides. <i>Advanced Materials</i> , 2021 , 33, e2005735	24	15
1051	Carbon Cationic Relay via Superelectrophiles: Synthesis of Spiro-diazafluorenes. <i>Organic Letters</i> , 2016 , 18, 6220-6223	6.2	15
1050	Improved performances of inkjet-printed poly(3-hexylthiophene) organic thin-film transistors by inserting an ionic self-assembled monolayer. <i>RSC Advances</i> , 2016 , 6, 40970-40974	3.7	15
1049	O-Nitrobenzyl-alt-(phenylethynyl)benzene copolymer-based nanoaggregates with highly efficient two-photon-triggered degradable properties via a FRET process. <i>Polymer Chemistry</i> , 2016 , 7, 3117-3125	4.9	15
1048	Nondilute 1,2-dichloroethane solution of poly(9,9-dioctylfluorene-2,7-diyl): A study on the aggregation process. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2016 , 34, 1311-1318	3.5	15
1047	A paper-based chemiluminescence immunoassay device for rapid and high-throughput detection of allergen-specific IgE. <i>Analyst, The</i> , 2019 , 144, 2584-2593	5	15
1046	Highly efficient broadband photodetectors based on lithography-free Au/BiOSe/Au heterostructures. <i>Nanoscale</i> , 2019 , 11, 20707-20714	7.7	15
1045	Low temperature processed PEDOT:PSS/VOx bilayer for hysteresis-free and stable perovskite solar cells. <i>Materials Letters</i> , 2019 , 236, 16-18	3.3	15
1044	Stretchable and Ultrasensitive Intelligent Sensors for Wireless Human Machine Manipulation. Advanced Functional Materials, 2021, 31, 2009466	15.6	15
1043	NIR-Absorbing water-soluble conjugated polymer dots for photoacoustic imaging-guided photothermal/photodynamic synergetic cancer therapy. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 7402-7	7410	15
1042	Hydrogen-bonded-assisted supramolecular microwires for pure violet lasers: benefits of preventing intermolecular Btacking and aggregation in single crystals. <i>Materials Chemistry Frontiers</i> , 2018 , 2, 2307-2312	7.8	15
1041	Ultrathin and Ultrasensitive Direct X-ray Detector Based on Heterojunction Phototransistors. Advanced Materials, 2021 , 33, e2101717	24	15
1040	Orthogonal solubility in fully conjugated donor-acceptor block copolymers: Compatibilizers for polymer/fullerene bulk-heterojunction solar cells. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2017 , 35, 207-218	3.5	14

1039	Quench-resistant and stable nanocarbon dot/sheet emitters with tunable solid-state fluorescence via aggregation-induced color switching. <i>Nanoscale</i> , 2019 , 11, 2131-2137	7.7	14
1038	A fluorogenic probe based on chelation-hydrolysis-enhancement mechanism for visualizing Zn in Parkinson's disease models. <i>Journal of Materials Chemistry B</i> , 2019 , 7, 2252-2260	7.3	14
1037	Transient fiber-shaped flexible electronics comprising dissolvable polymer composites toward multicolor lighting. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 1472-1476	7.1	14
1036	Design, Synthesis, and Postvapor Treatment of Neutral Fulleropyrrolidine Electron-Collecting Interlayers for High-Efficiency Inverted Polymer Solar Cells. <i>ACS Applied Electronic Materials</i> , 2019 , 1, 854-861	4	14
1035	Role of Planar Conformations in Aggregation Induced Spectral Shifts of Supermolecular Oligofluorenols in Solutions and Films: A Combined Experimental and MD/TD-DFT Study. <i>Journal of Physical Chemistry B</i> , 2015 , 119, 10316-33	3.4	14
1034	A polyhedral supramolecular system of endocyclic crystalline organic nanostructures: the case of triptycenes. <i>CrystEngComm</i> , 2015 , 17, 1448-1452	3.3	14
1033	Efficient amplified spontaneous emission from oligofluorene-pyrene starbursts with improved electron affinity property. <i>Optics Express</i> , 2015 , 23, A465-70	3.3	14
1032	Construction of Identical [2 + 2] Schiff-Base Macrocyclic Ligands by Ln(III) and Zn(II) Template Ions Including Efficient Yb(III) Near-Infrared Sensitizers. <i>Inorganic Chemistry</i> , 2015 , 54, 5295-300	5.1	14
1031	Tuning Charge Balance in Solution-Processable Bipolar Triphenylamine-diazafluorene Host Materials for Phosphorescent Devices. <i>ACS Applied Materials & Applied Materia</i>	9.5	14
1030	Purely organic optoelectronic materials with ultralong-lived excited states under ambient conditions. <i>Science Bulletin</i> , 2015 , 60, 1631-1637	10.6	14
1030		10.6	14
	conditions. <i>Science Bulletin</i> , 2015 , 60, 1631-1637 HOMO-LUMO energy gap control in platinum(II) biphenyl complexes containing 2,2'-bipyridine		
1029	conditions. <i>Science Bulletin</i> , 2015 , 60, 1631-1637 HOMO-LUMO energy gap control in platinum(II) biphenyl complexes containing 2,2'-bipyridine ligands. <i>Dalton Transactions</i> , 2015 , 44, 17075-90 Easily fixed simple small ESIPT molecule with aggregation induced emission for fast and	4.3	14
1029	conditions. <i>Science Bulletin</i> , 2015 , 60, 1631-1637 HOMO-LUMO energy gap control in platinum(II) biphenyl complexes containing 2,2'-bipyridine ligands. <i>Dalton Transactions</i> , 2015 , 44, 17075-90 Easily fixed simple small ESIPT molecule with aggregation induced emission for fast and photostable Eurn-on bioimaging. <i>RSC Advances</i> , 2015 , 5, 7789-7793 Conjugated Random Terpolymer Donors towards High-Efficiency Polymer Solar Cells. <i>Chinese</i>	4·3 3·7	14
1029 1028 1027	Conditions. Science Bulletin, 2015, 60, 1631-1637 HOMO-LUMO energy gap control in platinum(II) biphenyl complexes containing 2,2'-bipyridine ligands. Dalton Transactions, 2015, 44, 17075-90 Easily fixed simple small ESIPT molecule with aggregation induced emission for fast and photostable Eurn-on bioimaging. RSC Advances, 2015, 5, 7789-7793 Conjugated Random Terpolymer Donors towards High-Efficiency Polymer Solar Cells. Chinese Journal of Chemistry, 2020, 38, 601-624 Nucleation Control-Triggering Cocrystal Polymorphism of Charge-Transfer Complexes Differing in	4·3 3·7 4·9	14 14 14
1029 1028 1027	HOMO-LUMO energy gap control in platinum(II) biphenyl complexes containing 2,2'-bipyridine ligands. <i>Dalton Transactions</i> , 2015 , 44, 17075-90 Easily fixed simple small ESIPT molecule with aggregation induced emission for fast and photostable Eurn-onlbioimaging. <i>RSC Advances</i> , 2015 , 5, 7789-7793 Conjugated Random Terpolymer Donors towards High-Efficiency Polymer Solar Cells. <i>Chinese Journal of Chemistry</i> , 2020 , 38, 601-624 Nucleation Control-Triggering Cocrystal Polymorphism of Charge-Transfer Complexes Differing in Physical and Electronic Properties. <i>ACS Applied Materials & Differential Resistance and Systems</i> , 12, 19718-19726 Negative differential resistance and hysteresis in graphene-based organic light-emitting devices.	4·3 3·7 4·9 9·5 7·1	14 14 14
1029 1028 1027 1026	HOMO-LUMO energy gap control in platinum(II) biphenyl complexes containing 2,2'-bipyridine ligands. <i>Dalton Transactions</i> , 2015 , 44, 17075-90 Easily fixed simple small ESIPT molecule with aggregation induced emission for fast and photostable flurn-on[bioimaging. <i>RSC Advances</i> , 2015 , 5, 7789-7793 Conjugated Random Terpolymer Donors towards High-Efficiency Polymer Solar Cells. <i>Chinese Journal of Chemistry</i> , 2020 , 38, 601-624 Nucleation Control-Triggering Cocrystal Polymorphism of Charge-Transfer Complexes Differing in Physical and Electronic Properties. <i>ACS Applied Materials & Differential Section Section</i>	4·3 3·7 4·9 9·5 7·1	14 14 14 14

1021	Probing magnetic-proximity-effect enlarged valley splitting in monolayer WSe2 by photoluminescence. <i>Nano Research</i> , 2018 , 11, 6252-6259	10	14
1020	Pt complex-based terpolymer acceptors linked through ancillary ligand for all-polymer solar cells. Journal of Materials Chemistry C, 2018 , 6, 9903-9913	7.1	14
1019	Inhibiting polysulfide shuttling using dual-functional nanowire/nanotube modified layers for highly stable lithiumBulfur batteries. <i>New Journal of Chemistry</i> , 2019 , 43, 14708-14713	3.6	14
1018	Single nanoparticles as versatile phototheranostics for tri-modal imaging-guided photothermal therapy. <i>Biomaterials Science</i> , 2019 , 7, 3609-3613	7.4	14
1017	Porous Molloß Nanosheets on Carbon Cloth for All-Solid-State Flexible Asymmetric Supercapacitors. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1901138	4.6	14
1016	Surface Anionization of Self-Assembled Iron Sulfide Hierarchitectures to Enhance Capacitive Storage for Alkaline-Metal-Ion Batteries. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2019 , 11, 39991-39997	, 9.5	14
1015	Efficient, color-stable flexible white top-emitting organic light-emitting diodes. <i>Organic Electronics</i> , 2013 , 14, 3037-3045	3.5	14
1014	Neutral linear supramolecular polymers constructed by three different interactions. <i>RSC Advances</i> , 2017 , 7, 29364-29367	3.7	14
1013	A robust and soluble nanopolymer based on molecular grid-based nanomonomer. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2017 , 35, 87-97	3.5	14
1012	A robust molecular unit nanogrid servicing as network nodes via molecular installing technology. <i>Materials Chemistry Frontiers</i> , 2017 , 1, 455-459	7.8	14
1011	Dimeric SFX host materials for red, green and blue phosphorescent organic light-emitting devices. <i>Synthetic Metals</i> , 2014 , 195, 321-327	3.6	14
1010	Bio-assembled nanocomposites in conch shells exhibit giant electret hysteresis. <i>Advanced Materials</i> , 2013 , 25, 711-8	24	14
1009	Efficient red organic light-emitting diodes based on a dinuclear europium complex. <i>Optical Materials</i> , 2007 , 29, 1514-1517	3.3	14
1008	Novel deep blue fluorescent fluorene-based copolymer containing hole-transporting arylamine segments. <i>Thin Solid Films</i> , 2002 , 417, 206-210	2.2	14
1007	Surface Passivation of (100)-Oriented GaAs via Plasma Deposition of an Ultrathin S-Containing Polymer Film and Its Effect on Photoluminescence. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 8592-859	8 ^{3.4}	14
1006	Protonation of Bipyridines and Their Vinylene B henylene W inylene Derivatives: Theoretical Analysis of the Positive Charge Effects. <i>Journal of Physical Chemistry A</i> , 2001 , 105, 8775-8781	2.8	14
1005	Electrolyte Dynamics Engineering for Flexible Fiber-Shaped Aqueous Zinc-Ion Battery with Ultralong Stability. <i>Nano Letters</i> , 2021 , 21, 9651-9660	11.5	14
1004	Biocompatible metal-free organic phosphorescent nanoparticles for efficiently multidrug-resistant bacteria eradication. <i>Science China Materials</i> , 2020 , 63, 316-324	7.1	14

1003	X-ray excited ultralong room-temperature phosphorescence for organic afterglow scintillators. <i>Chemical Communications</i> , 2020 , 56, 13559-13562	5.8	14	
1002	All-inorganic Sn-based Perovskite Solar Cells: Status, Challenges, and Perspectives. <i>ChemSusChem</i> , 2020 , 13, 6477-6497	8.3	14	
1001	Regulated Crystallization of FASnI Films through Seeded Growth Process for Efficient Tin Perovskite Solar Cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 41454-41463	9.5	14	
1000	Ammonium Intercalation Induced Expanded 1T-Rich Molybdenum Diselenides for Improved Lithium Ion Storage. <i>ACS Applied Materials & Diselenides (Materials & Diselenides (Mat</i>	9.5	14	
999	Low Roll-Off and High Stable Electroluminescence in Three-Dimensional FAPbI Perovskites with Bifunctional-Molecule Additives. <i>Nano Letters</i> , 2021 , 21, 3738-3744	11.5	14	
998	Organic Semiconducting Macromolecular Dyes for NIR-II Photoacoustic Imaging and Photothermal Therapy. <i>Advanced Functional Materials</i> , 2021 , 31, 2104650	15.6	14	
997	Edge structures and properties of triangular antidots in single-layer MoS2. <i>Applied Physics Letters</i> , 2016 , 109, 091603	3.4	14	
996	Heteroatomic Conjugated Polymers and the Spectral Tuning of Electroluminescence via a Supramolecular Coordination Strategy. <i>Macromolecular Rapid Communications</i> , 2016 , 37, 1807-1813	4.8	14	
995	Benzothiazole-pyrimidine-based BODIPY analogues: promising luminophores with fluorescence sensing and imaging ability and asymmetrization-induced solid-state emission. <i>Dalton Transactions</i> , 2016 , 45, 17274-17280	4.3	14	
994	All-Inorganic Perovskite Nanocrystals-Based Light Emitting Diodes and Solar Cells. <i>ChemNanoMat</i> , 2019 , 5, 266-277	3.5	14	
993	Organic semiconducting nanomaterials-assisted phototheranostics in near-infrared-II biological window. <i>View</i> , 2021 , 2, 20200070	7.8	14	
992	3D printing-assisted gyroidal graphite foam for advanced supercapacitors. <i>Chemical Engineering Journal</i> , 2021 , 416, 127885	14.7	14	
991	Direct photopolymerization and lithography of multilayer conjugated polymer nanofilms for high performance memristors. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 11162-11169	7.1	14	
990	Broadband plasmon-enhanced polymer solar cells with power conversion efficiency of 9.26% using mixed Au nanoparticles. <i>Optics Communications</i> , 2016 , 362, 50-58	2	13	
989	The trapping, detrapping, and transport of the ambipolar charges in the electret of Polystyrene/C 60 blend films. <i>Organic Electronics</i> , 2017 , 44, 247-252	3.5	13	
988	In situ surface assembly of core-shell TiO2-copper(I) cluster nanocomposites for visible-light photocatalytic reduction of Cr(VI). <i>Applied Catalysis B: Environmental</i> , 2017 , 205, 368-375	21.8	13	
987	Nitrogen-doped star-shaped polycyclic aromatic hydrocarbons based on fused triazatruxenes: synthesis and optoelectronic properties. <i>New Journal of Chemistry</i> , 2017 , 41, 13619-13624	3.6	13	
986	An eco-friendly water-assisted polyol method to enhance the aspect ratio of silver nanowires <i>RSC Advances</i> , 2019 , 9, 1933-1938	3.7	13	

985	Hypersensitive and selective biosensing based on microfiber interferometry and molecular imprinted nanoparticles. <i>Biosensors and Bioelectronics</i> , 2019 , 141, 111347	11.8	13
984	Intelligent polymer-MnO nanoparticles for dual-activatable photoacoustic and magnetic resonance bimodal imaging in living mice. <i>Chemical Communications</i> , 2019 , 55, 6006-6009	5.8	13
983	Synthesis of DonorAcceptor Gridarenes with Tunable Electronic Structures for Synaptic Learning Memristor. <i>ACS Omega</i> , 2019 , 4, 5863-5869	3.9	13
982	Esystem based coordination polymer hollow nanospheres for the selective sensing of aromatic nitro explosive compounds. <i>New Journal of Chemistry</i> , 2015 , 39, 9275-9280	3.6	13
981	High-mobility flexible pentacene-based organic field-effect transistors with PMMA/PVP double gate insulator layers and the investigation on their mechanical flexibility and thermal stability. <i>RSC Advances</i> , 2015 , 5, 95273-95279	3.7	13
980	Strong nonlinear optical phosphorescence from water-soluble polymer dots: Towards the application of two-photon bioimaging. <i>Dyes and Pigments</i> , 2015 , 123, 218-221	4.6	13
979	Simplified phosphorescent organic light-emitting devices using heavy doping with an Ir complex as an emitter. <i>RSC Advances</i> , 2015 , 5, 4261-4265	3.7	13
978	Omnidirectional and broadband optical absorption enhancement in small molecule organic solar cells by a patterned MoO 3 /Ag/MoO 3 transparent anode. <i>Optics Communications</i> , 2015 , 338, 226-232	2	13
977	Self-Assembly of Completely Inorganic Perovskite Nanocrystals with Improved Stability by Anchoring on Kaolinite Lamellae. <i>Advanced Optical Materials</i> , 2020 , 8, 1901485	8.1	13
976	Organic non-volatile memory based on pentacene/tris(8-hydroxy quinoline) aluminum heterojunction transistor. <i>Organic Electronics</i> , 2018 , 57, 335-340	3.5	13
975	Construction of benzothiazole/pyridone based bi-heterocyclic dyes and their Nill and Cull complexes. <i>Dyes and Pigments</i> , 2018 , 149, 796-803	4.6	13
974	Polymer-Assisted Single Crystal Engineering of Organic Semiconductors To Alter Electron Transport. <i>ACS Applied Materials & Acs Acc Acc Acc Acc Acc Acc Acc Acc Acc</i>	9.5	13
973	Efficient non-doped blue phosphorescent organic light-emitting devices by incorporating Ag-island nanostructures. <i>Organic Electronics</i> , 2018 , 58, 25-32	3.5	13
972	Mitochondrial Specific HS Fluorogenic Probe for Live Cell Imaging by Rational Utilization of a Dual-Functional-Photocage Group. <i>ACS Sensors</i> , 2018 , 3, 1622-1626	9.2	13
971	Surfactant Charge Mediated Shape Control of Nano- or Microscaled Coordination Polymers: The Case of Tetrapyridylporphine Based Metal Complex. <i>Crystal Growth and Design</i> , 2014 , 14, 1251-1257	3.5	13
970	Scattering or Photoluminescence? Major Mechanism Exploration on Performance Enhancement in P3HT-Based Polymer Solar Cells with NaYF4:2% Er3+, 18% Yb3+ Upconverting Nanocrystals. <i>Advanced Optical Materials</i> , 2014 , 2, 442-449	8.1	13
969	First principles study on the influence of electronic configuration of M on Cu3NM: M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni. <i>Computational and Theoretical Chemistry</i> , 2014 , 1027, 33-38	2	13
968	Pure and stable top-emitting white organic light-emitting diodes utilizing heterojunction blue emission layers and wide-angle interference. ACS Applied Materials & amp; Interfaces, 2014, 6, 5273-80	9.5	13

(2020-2014)

967	Efficient energy transfer from inserted CdTe quantum dots to YVOtEuL+ inverse opals: a novel strategy to improve and expand visible excitation of rare earth ions. <i>Nanoscale</i> , 2014 , 6, 8075-83	7.7	13	
966	Isolated large Bystems in pyrenefluorene derivatives for intramolecular through-space interaction in organic semiconductors. <i>Organic Electronics</i> , 2013 , 14, 782-789	3.5	13	
965	Proton-transfer supramolecular salts based on proton sponge 2,2?-dipyridylamine. <i>Journal of Molecular Structure</i> , 2013 , 1051, 124-131	3.4	13	
964	Pyrene-Cored Starburst Oligofluorenes with Diphenylamine End-Cappers: Design, Synthesis, Stabilized Optical Gain, and Lasing Properties. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 27569-27579	3.8	13	
963	Coordination polymers assembled from semirigid fluorene-based ligand: A couple of enantiomers. Journal of Solid State Chemistry, 2015 , 231, 47-52	3.3	13	
962	Development of Two-Channel Phosphorescent CoreBhell Nanoprobe for Ratiometric and Time-Resolved Luminescence Imaging of Intracellular Oxygen Levels. <i>Particle and Particle Systems Characterization</i> , 2015 , 32, 48-53	3.1	13	
961	Dipyrido[3,2-a:2',3'-c]phenazine-based donor-acceptor aromatic heterocyclic compounds with thienyl and triphenylamino chromophores at the 2,7- and/or 10,13-positions. <i>Chemistry - an Asian Journal</i> , 2014 , 9, 514-25	4.5	13	
960	Plasmon-enhanced polymer photovoltaic cells based on large aspect ratio gold nanorods and the related working mechanism. <i>Applied Physics Letters</i> , 2014 , 104, 213903	3.4	13	
959	Facile synthesis and self-assembly of diazafluorenone-based pl (donorlicceptor) organic semiconductors. <i>Tetrahedron</i> , 2012 , 68, 8216-8221	2.4	13	
958	Synthesis of graphene by chemical vapor deposition: effect of growth conditions. <i>Journal of Nanoscience and Nanotechnology</i> , 2013 , 13, 6471-84	1.3	13	
957	Nitrogen-doped carbon nanotube/polyaniline composite: Synthesis, characterization, and its application to the detection of dopamine. <i>Science China Chemistry</i> , 2011 , 54, 1615-1621	7.9	13	
956	Synthesis and Characterization of 2,3,7,8,12,13-Hexabromotruxene and Its Hexaaryl Derivatives. <i>Chemistry Letters</i> , 2009 , 38, 286-287	1.7	13	
955	Influence of bidentate structure of an aryl phosphine oxide ligand on photophysical properties of its EuIII complex. <i>Journal of Rare Earths</i> , 2010 , 28, 666-670	3.7	13	
954	Carbazole end-capped pyrene starburst with enhanced electrochemical stability and device performance. <i>Journal of Polymer Science Part A</i> , 2010 , 48, 4943-4949	2.5	13	
953	Ytterbium doped heavy metal oxide glasses with high emission cross-section. <i>Journal of Alloys and Compounds</i> , 2005 , 398, 170-172	5.7	13	
952	Revealing electronic nature of broad bound exciton bands in two-dimensional semiconducting WS2 and MoS2. <i>Physical Review Materials</i> , 2017 , 1,	3.2	13	
951	Boosting Circularly Polarized Luminescence of Organic Conjugated Systems Twisted Intramolecular Charge Transfer. <i>Research</i> , 2020 , 2020, 3839160	7.8	13	
950	Donor-Acceptor Type Pendant Conjugated Molecules Based on a Triazine Center with Depressed Intramolecular Charge Transfer Characteristics as Gain Media for Organic Semiconductor Lasers. Chemistry - A Furnnean Journal 2020, 26, 3103-3112	4.8	13	

949	NH2-GQDs-Doped Nickel-Cobalt Oxide Deposited on Carbon Cloth for Nonenzymatic Detection of Glucose. <i>Advanced Materials Interfaces</i> , 2020 , 7, 1901578	4.6	13
948	Polymer strategies for high-efficiency and stable perovskite solar cells. <i>Nano Energy</i> , 2021 , 82, 105712	17.1	13
947	Post-Treatment of Screen-Printed Silver Nanowire Networks for Highly Conductive Flexible Transparent Films. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2100548	4.6	13
946	Supramolecular Design of Donor-Acceptor Complexes via Heteroatom Replacement toward Structure and Electrical Transporting Property Tailoring. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2019 , 11, 1109-1116	9.5	13
945	In situ observation of phase suppression by lattice strain in all-inorganic perovskite solar cells. <i>Nano Energy</i> , 2020 , 73, 104803	17.1	13
944	Fluorogenic Probes/Inhibitors of Lactamase and their Applications in Drug-Resistant Bacteria. Angewandte Chemie - International Edition, 2021 , 60, 24-40	16.4	13
943	Rapid inactivation of multidrug-resistant bacteria and enhancement of osteoinduction via titania nanotubes grafted with polyguanidines. <i>Journal of Materials Science and Technology</i> , 2021 , 69, 188-199	9.1	13
942	Recent Insights into Emerging Coronavirus: SARS-CoV-2. ACS Infectious Diseases, 2021 , 7, 1369-1388	5.5	13
941	On-demand modulating afterglow color of water-soluble polymers through phosphorescence FRET for multicolor security printing <i>Science Advances</i> , 2022 , 8, eabk2925	14.3	13
940	A novel visible detection strategy for lysozyme based on gold nanoparticles and conjugated polymer brush. <i>Sensors and Actuators B: Chemical</i> , 2017 , 246, 78-84	8.5	12
939	Ruthenium-Functionalized Hierarchical Carbon Nanocages as Efficient Catalysts for Li-O2 Batteries. <i>ChemNanoMat</i> , 2017 , 3, 415-419	3.5	12
938	Scrolling up graphene oxide nanosheets assisted by self-assembled monolayers of alkanethiols. <i>Nanoscale</i> , 2017 , 9, 9997-10001	7.7	12
937	Carbazole/oligofluorene end-capped hexanes: solution-processable host materials for phosphorescent organic light-emitting diodes. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 4442-4447	7.1	12
936	Optical thickness identification of transition metal dichalcogenide nanosheets on transparent substrates. <i>Nanotechnology</i> , 2017 , 28, 164001	3.4	12
935	Facile synthesis of Mn3[Co(CN)6]2[hH2O nanocrystals for high-performance electrochemical energy storage devices. <i>Inorganic Chemistry Frontiers</i> , 2017 , 4, 442-449	6.8	12
934	Effects of a highly lipophilic substituent on the environmental stability of naphthalene tetracarboxylic diimide-based n-channel thin-film transistors. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 848-853	7.1	12
933	Pyridine linked fluorene hybrid bipolar host for blue, green, and orange phosphorescent organic light-emitting diodes toward solution processing. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 11937-1194	6 ^{7.1}	12
932	Direct-Indirect Transition of Pressurized Two-Dimensional Halide Perovskite: Role of Benzene Ring Stack Ordering. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 5687-5693	6.4	12

Molecular engineering on all ortho-linked carbazole/oxadiazole hybrids toward highly-efficient thermally activated delayed fluorescence materials in OLEDs. <i>Chinese Chemical Letters</i> , 2019 , 30, 1955-	1958	12	
Dopant-Free Hole-Transporting Polycarbazoles with Tailored Backbones for Efficient Inverted Perovskite Solar Cells. <i>Macromolecules</i> , 2019 , 52, 4757-4764	5.5	12	
Design and Synthesis of Conjugated Starburst Molecules for Optoelectronic Applications. <i>Chemical Record</i> , 2019 , 19, 1571-1595	6.6	12	
Electric Field Induced Molecular Assemblies Showing Different Nanostructures and Distinct Emission Colors. <i>Small Methods</i> , 2019 , 3, 1900142	12.8	12	
cis and trans Isomers distinguished by imidazole N-alkylation after Debus-Radziszewski reaction starting from 2,7-di-tert-butyl-pyrene-4,5,9,10-tetraone. <i>Tetrahedron</i> , 2015 , 71, 3195-3202	2.4	12	
Two Symmetrically Bis-substituted Pyrene Derivatives: Synthesis, Photoluminescence, and Electroluminescence. <i>Chinese Journal of Chemistry</i> , 2015 , 33, 967-973	4.9	12	
Green Solution-Bathing Process for Efficient Large-Area Planar Perovskite Solar Cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 24905-24912	9.5	12	
Porous trimetallic fluoride NitoM (M´= Mn, Fe, Cu, Zn) nanoprisms as electrodes for asymmetric supercapacitors. <i>Materials Today Energy</i> , 2020 , 17, 100429	7	12	
Mechanistic insight in site-selective and anisotropic etching of prussian blue analogues toward designable complex architectures for efficient energy storage. <i>Nanoscale</i> , 2020 , 12, 11112-11118	7.7	12	
Enabling and Controlling Negative Photoconductance of FePS3 Nanosheets by Hot Carrier Trapping. <i>Advanced Optical Materials</i> , 2020 , 8, 2000201	8.1	12	
Stereoselective gridization and polygridization with centrosymmetric molecular packing. <i>Nature Communications</i> , 2020 , 11, 1756	17.4	12	
Bright monolayer tungsten disulfide via exciton and trion chemical modulations. <i>Nanoscale</i> , 2018 , 10, 6294-6299	7.7	12	
Cyclometalated Pt complex based random terpolymers as electron acceptors for all polymer solar cells. <i>Journal of Polymer Science Part A</i> , 2018 , 56, 105-115	2.5	12	
Systematically tuning of optoelectronic properties from electron donating to accepting substituents on bicarbazole/cyanobenzene hybrids: Host to dopant materials for phosphorescent and delayed fluorescence OLEDs. <i>Organic Electronics</i> , 2018 , 52, 22-31	3.5	12	
Natural Molecules From Chinese Herbs Protecting Against Parkinson's Disease via Anti-oxidative Stress. <i>Frontiers in Aging Neuroscience</i> , 2018 , 10, 246	5.3	12	
Improving the exciton dissociation of polymer/fullerene interfaces with a minimal loading amount of energy cascading molecular dopant. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 15977-15984	13	12	
Large-area patterned 2D conjugated microporous polymers via photomask-assisted solid-state photopolymerization. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 7295-7301	7.1	12	
Thieno[3,2-b]indole (TI) bridged A- D-A small molecules: Synthesis, characterizations and organic solar cell applications. <i>Dyes and Pigments</i> , 2019 , 160, 16-24	4.6	12	
	thermally activated delayed fluorescence materials in OLEDs. <i>Chinese Chemical Letters</i> , 2019 , 30, 1955. Dopant-Free Hole-Transporting Polycarbazoles with Tailored Backbones for Efficient Inverted Perovskite Solar Cells. <i>Macromolecules</i> , 2019 , 52, 4757-4764 Design and Synthesis of Conjugated Starburst Molecules for Optoelectronic Applications. <i>Chemical Record</i> , 2019 , 19, 1571-1595 Electric Field Induced Molecular Assemblies Showing Different Nanostructures and Distinct Emission Colors. <i>Small Methods</i> , 2019 , 3, 1900142 cis and trans Isomers distinguished by imidazole N-alkylation after Debus-Radziszewski reaction starting from 2,7-di-tert-butyl-pyrene-4,5,9,10-tetraone. <i>Tetrahedron</i> , 2015 , 71, 3195-3202 Two Symmetrically Bis-substituted Pyrene Derivatives: Synthesis, Photoluminescence, and Electroluminescence. <i>Chinese Journal of Chemistry</i> , 2015 , 33, 967-973 Green Solution-Bathing Process for Efficient Large-Area Planar Perovskite Solar Cells. <i>ACS Applied Materials Samp: Interfaces</i> , 2020 , 12, 24905-24912 Porous trimetallic fluoride Nitloß (M'= Mn, Fe, Cu, Zn) nanoprisms as electrodes for asymmetric supercapacitors. <i>Materials Today Energy</i> , 2020 , 17, 100429 Mechanistic insight in site-selective and anisotropic etching of prussian blue analogues toward designable complex architectures for efficient energy storage. <i>Nanoscale</i> , 2020 , 12, 11112-11118 Enabling and Controlling Negative Photoconductance of FePS3 Nanosheets by Hot Carrier Trapping. <i>Advanced Optical Materials</i> , 2020 , 8, 2000201 Stereoselective gridization and polygridization with centrosymmetric molecular packing. <i>Nature Communications</i> , 2020 , 11, 1756 Bright monolayer tungsten disulfide via exciton and trion chemical modulations. <i>Nanoscale</i> , 2018 , 10, 6294-6299 Cyclometalated Pt complex based random terpolymers as electron acceptors for all polymer solar cells. <i>Journal of Polymer Science Part A</i> , 2018 , 56, 105-115 Systematically tuning of optoelectronic properties from electron donating to accepting sub	thermally activated delayed Fluorescence materials in OLEDs. Chinese Chemical Letters, 2019, 30, 1955-1958 Dopant-Free Hole-Transporting Polycarbazoles with Tailored Backbones for Efficient Inverted Perovskite Solar Cells. Macromolecules, 2019, 52, 4757-4764 Design and Synthesis of Conjugated Starburst Molecules for Optoelectronic Applications. Chemical Record, 2019, 19, 1571-1595 Electric Field Induced Molecular Assemblies Showing Different Nanostructures and Distinct Emission Colors. Small Methods, 2019, 3, 1900142 Electric Field Induced Molecular Assemblies Showing Different Nanostructures and Distinct Emission Colors. Small Methods, 2019, 3, 1900142 Electric Field Induced Molecular Assemblies Showing Different Nanostructures and Distinct Emission Colors. Small Methods, 2019, 3, 1900142 Electric Field Induced Molecular Assemblies Showing Different Nanostructures and Distinct Emission Colors. Small Methods, 2019, 3, 1900142 Two Symmetrically Bis-substituted Pyrene Derivatives: Synthesis, Photoluminescence, and Electroluminescence. Chinese Journal of Chemistry, 2015, 33, 967-973 Green Solution-Bathing Process for Efficient Large-Area Planar Perovskite Solar Cells. ACS Applied Materials Bamp; Interfaces, 2020, 12, 24905-24912 Porous trimetallic fluoride NilCoBI (M' = Mn, Fe, Cu, Zn) nanoprisms as electrodes for asymmetric supercapacitors. Materials Today Energy, 2020, 17, 100429 Mechanistic Insight in site-selective and anisotropic etching of prussian blue analogues toward designable complex architectures for efficient energy storage. Nanoscale, 2020, 12, 11112-11118 77 Enabling and Controlling Negative Photoconductance of FePS3 Nanosheets by Hot Carrier Trapping. Advanced Optical Materials, 2020, 8, 2000201 Stereoselective gridization and polygridization with centrosymmetric molecular packing. Nature Communications, 2020, 11, 1736 Bright monolayer tungsten disulfide via exciton and trion chemical modulations. Nanoscale, 2018, 10, 294-6299 Cyclometalated Pt complex based random terpolymers as el	thermally activated delayed fluorescence materials in OLEDs. Chinese Chemical Letters, 2019, 30, 1955-1958 12 Dopant-Free Hole-Transporting Polycarbazoles with Tailored Backbones for Efficient Inverted Perovskite Solar Cells. Macromolecules, 2019, 52, 4757-4764 Design and Synthesis of Conjugated Starburst Molecules for Optoelectronic Applications. Chemical Record, 2019, 19, 1571-1595 Electric Field Induced Molecular Assemblies Showing Different Nanostructures and Distinct Insistinct Colors. Small Methods, 2019, 3, 1900142 Cis and trans Isomers distinguished by imidazole N-alkylation after Debus-Radziszewski reaction starting from 2,7-di-tert-butyl-pyrene-4,5,9,10-tetraone. Tetrahedron, 2015, 71, 3195-3202 Two Symmetrically Bis-substituted Pyrene Derivatives: Synthesis, Photoluminescence, and Electroluminescence. Chinese Journal of Chemistry, 2015, 33, 967-973 Two Symmetrically Bis-substituted Pyrene Derivatives: Synthesis, Photoluminescence, and Electroluminescence. Chinese Journal of Chemistry, 2015, 33, 967-973 Green Solution-Bathing Process for Efficient Large-Area Planar Perovskite Solar Cells. ACS Applied Materials & Chinese Journal of Chemistry, 2015, 33, 967-973 Green Solution-Bathing Process for Efficient Large-Area Planar Perovskite Solar Cells. ACS Applied Materials & Chinese Journal of Chemistry, 2015, 33, 967-973 Mechanistic fluoride NitLoß (M=Mn, Fe, Cu, Zn) nanoprisms as electrodes for asymmetric supercapacitors. Materials Today Energy, 2020, 17, 100429 Mechanistic insight in site-selective and anisotropic etching of prussian blue analogues toward designable complex architectures for efficient energy storage. Nanoscale, 2020, 12, 11112-11118 The Enabling and Controlling Negative Photoconductance of FePS3 Nanosheets by Hot Carrier Trapping, Advanced Optical Materials, 2020, 8, 2000201 Stereoselective gridization and polygridization with centrosymmetric molecular packing. Nature Communications, 2020, 11, 1756 Bright monolayer tungsten disulfide via exciton and trion chemical modulations

913	Design of a nanoswitch for sequentially multi-species assay based on competitive interaction between DNA-templated fluorescent copper nanoparticles, Cr and pyrophosphate and ALP. <i>Talanta</i> , 2019 , 205, 120132	6.2	12
912	Controllable Multiemission with Ultralong Organic Phosphorescence in Crystal by Isomerization. <i>Advanced Optical Materials</i> , 2019 , 7, 1901076	8.1	12
911	Synthesis of polyaniline/Au composite nanotubes and their high performance in the detection of NADH. <i>Journal of Solid State Electrochemistry</i> , 2014 , 18, 1717-1723	2.6	12
910	Solution-processed white organic light-emitting diodes with mixed-host structures. <i>Journal of Luminescence</i> , 2012 , 132, 697-701	3.8	12
909	Effect of pH on the photophysical properties of two new carboxylic-substituted iridium(III) complexes. <i>Analyst, The</i> , 2013 , 138, 1689-99	5	12
908	Fluorescence imaging mitochondrial copper(II) via photocontrollable fluorogenic probe in live cells. <i>Chinese Chemical Letters</i> , 2017 , 28, 1965-1968	8.1	12
907	Selective synthesis of LaF3 and NaLaF4 nanocrystals via lanthanide ion doping. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 9188-9193	7.1	12
906	Effect of gold nanorods and nanocubes on electroluminescent performances in organic light-emitting diodes and its working mechanism. <i>AIP Advances</i> , 2015 , 5, 067121	1.5	12
905	Effect of Nd substitution for Ca on crystal structure, optical and magnetic properties of multiferroic Bi 0.9 Ca 0.1 FeO 3. <i>Journal of Alloys and Compounds</i> , 2015 , 635, 272-277	5.7	12
904	The effect of the hole injection layer on the performance of single layer organic light-emitting diodes. <i>Journal of Applied Physics</i> , 2014 , 116, 224502	2.5	12
903	Benefits of dispersion solvents with more OH groups in electrospray preparation of TiO2 photoelectrode for the improvement of DSSC performance. <i>Organic Electronics</i> , 2014 , 15, 969-976	3.5	12
902	Bottom-up synthesis of nanoscale conjugation-interrupted frameworks and their electrical properties. <i>Small</i> , 2013 , 9, 3218-23	11	12
901	A near-infrared phosphorescent probe for Flbased on a cationic iridium(III) complex with triarylboron moieties. <i>Science China Chemistry</i> , 2011 , 54, 1750-1758	7.9	12
900	In Situ UPS Study of the Formation of FeSi Films from cis-Fe(SiCl3)2(CO)4 <i>Organometallics</i> , 1998 , 17, 5825-5829	3.8	12
899	Efficient electroluminescent tertiary europium(III)	3.6	12
898	Fabrication of europium complexes with 4?-(4-methylphenyl)-2,2?:6?,2?-terpyridine and 4,4?-dinonyl-2,2?-dipyridyl at the airWater interface and their emission properties in LangmuirBlodgett films. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2006 ,	5.1	12
897	Cationic phenyl-substituted poly(p-phenylenevinylene) related copolymers with efficient photoluminescence and synthetically tunable emissive colors. <i>Polymer</i> , 2005 , 46, 11165-11173	3.9	12
896	Electrospray as a Fabrication Tool in Organic Photovoltaics. <i>Reviews in Nanoscience and Nanotechnology</i> , 2012 , 1, 172-186		12

895	Highly Efficient Blue Phosphorescence from Pillar-Layer MOFs by Ligand Functionalization. <i>Advanced Materials</i> , 2021 , e2107612	24	12
894	Stereoassembled VO@FeOOH Hollow Architectures with Lithiation Volumetric Strain Self-Reconstruction for Lithium-Ion Storage. <i>Research</i> , 2020 , 2020, 2360796	7.8	12
893	Combating the Coronavirus Pandemic: Early Detection, Medical Treatment, and a Concerted Effort by the Global Community. <i>Research</i> , 2020 , 2020, 6925296	7.8	12
892	Research Progress of Non-Fullerene Small-Molecule Acceptor Materials for Organic Solar Cells. <i>Acta Chimica Sinica</i> , 2014 , 72, 158	3.3	12
891	Anthracene-Based Lanthanide Coordination Polymer: Structure, Luminescence, and Detections of UO, PO, and 2-Thiazolidinethione-4-carboxylic Acid in Water. <i>Inorganic Chemistry</i> , 2020 , 59, 18027-1803-	4 ^{5.1}	12
890	Electrostatically assembled carbon dots/boron nitride nanosheet hybrid nanostructures for thermal quenching-resistant white phosphors. <i>Nanoscale</i> , 2020 , 12, 524-529	7.7	12
889	Fabrication of (4, 10) and (4, 12)-Connected Multifunctional Zirconium Metal-Organic Frameworks for the Targeted Adsorption of a Guest Molecule. <i>Inorganic Chemistry</i> , 2020 , 59, 695-704	5.1	12
888	Hierarchical Hollow-Pore Nanostructure Bilayer Heterojunction Comprising Conjugated Polymers for High-Performance Flash Memory. <i>ACS Applied Materials & Distriction Comprising Conjugated Polymers for High-Performance Flash Memory.</i> ACS Applied Materials & Distriction Comprising Conjugated Polymers	9.5	12
887	Deterministic Approach to Achieve Full-Polarization Cloak. <i>Research</i> , 2021 , 2021, 6382172	7.8	12
886	Ladder-like energy-relaying exciplex enables 100% internal quantum efficiency of white TADF-based diodes in a single emissive layer. <i>Nature Communications</i> , 2021 , 12, 3640	17.4	12
885	Smart NIR-Light-Mediated Nanotherapeutic Agents for Enhancing Tumor Accumulation and Overcoming Hypoxia in Synergistic Cancer Therapy <i>ACS Applied Bio Materials</i> , 2019 , 2, 1225-1232	4.1	12
884	Rational Design of Phosphorescent Iridium(III) Complexes for Selective Glutathione Sensing and Amplified Photodynamic Therapy. <i>ChemBioChem</i> , 2019 , 20, 576-586	3.8	12
883	Stimuli-responsive photofunctional materials for green and security printing. <i>Informal</i> Materilly, 2021 , 3, 82-100	23.1	12
882	Enhanced open circuit voltage of small molecule acceptors containing angular-shaped indacenodithiophene units for P3HT-based organic solar cells. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 12347-12354	7.1	12
881	Engineering Luminescence Lifetimes of Cu(I) Complexes for Optical Multiplexing. <i>Advanced Optical Materials</i> , 2018 , 6, 1801065	8.1	12
880	Insight into chirality on molecular stacking for tunable ultralong organic phosphorescence. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 10179-10183	7.1	12
879	Exploring side-chain length effect on thase of polyfluorene derivatives in electrospinning and their optical behavior. <i>Polymer</i> , 2018 , 153, 338-343	3.9	12
878	Interfacial engineering of graphene for highly efficient blue and white organic light-emitting devices. <i>Scientific Reports</i> , 2018 , 8, 8155	4.9	12

877	A Partial Sulfuration Strategy Derived Multi-Yolk-Shell Structure for Ultra-Stable K/Na/Li-ion Storage. <i>Advanced Materials</i> , 2021 , 33, e2100837	24	12
876	Starlike polymer brush-based ultrasmall nanoparticles with simultaneously improved NIR-II fluorescence and blood circulation for efficient orthotopic glioblastoma imaging. <i>Biomaterials</i> , 2021 , 275, 120916	15.6	12
875	Effect of molecular weight on conformational characteristics of poly(3-hexyl thiophene). <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2017 , 55, 1273-1277	2.6	11
874	Inverse-architecture perovskite solar cells with 5,6,11,12-tetraphenylnaphthacene as a hole conductor. <i>RSC Advances</i> , 2017 , 7, 29944-29952	3.7	11
873	Graphene Oxide Scroll Meshes Prepared by Molecular Combing for Transparent and Flexible Electrodes. <i>Advanced Materials Technologies</i> , 2017 , 2, 1600231	6.8	11
872	A Unique Blend of 2-Fluorenyl-2-anthracene and 2-Anthryl-2-anthracence Showing White Emission and High Charge Mobility. <i>Angewandte Chemie</i> , 2017 , 129, 740-745	3.6	11
871	Facile Synthesis of TiCT-Poly(vinylpyrrolidone) Nanocomposites for Nonvolatile Memory Devices with Low Switching Voltage. <i>ACS Applied Materials & Devices amp; Interfaces</i> , 2019 , 11, 38061-38067	9.5	11
870	Naphthalene-diimide selenophene copolymers as efficient solution-processable electron-transporting material for perovskite solar cells. <i>Organic Electronics</i> , 2019 , 67, 208-214	3.5	11
869	A rapid and highly selective paper-based device for high-throughput detection of cysteine with red fluorescence emission and a large Stokes shift. <i>Analytical Methods</i> , 2019 , 11, 1312-1316	3.2	11
868	Indepth Studies on Working Mechanism of Plasmon-Enhanced Inverted Perovskite Solar Cells Incorporated with 2 CoreBhell Nanocubes. <i>ACS Applied Energy Materials</i> , 2019 , 2, 3605	5-3 6 13	11
867	Cost-effective synthesis of \(\text{\text{carboline/pyridine hybrid bipolar host materials with improved electron-transport ability for efficient blue phosphorescent OLEDs. \(RSC \) Advances, \(\text{2015}, 5, 65481-6548 \)	6 ^{3.7}	11
866	Synthesis, characterization, energy transfer and photophysical properties of ethynyl bridge linked porphyrinBaphthalimide pentamer and its metal complexes. <i>Journal of Molecular Structure</i> , 2015 , 1094, 1-8	3.4	11
865	Effects of strong hydrogen bonds and weak intermolecular interactions on supramolecular assemblies of 4-fluorobenzylamine. <i>Journal of Molecular Structure</i> , 2015 , 1091, 98-108	3.4	11
864	Semitransparent inverted organic solar cell with improved absorption and reasonable transparency perception based on the nanopatterned MoO 3 / Ag / MoO 3 anode. <i>Journal of Nanophotonics</i> , 2015 , 9, 093043	1.1	11
863	Improved Crystallization and Stability of Mixed-Cation Tin Iodide for Lead-Free Perovskite Solar Cells. <i>ACS Applied Energy Materials</i> , 2020 , 3, 5415-5426	6.1	11
862	Access to Enantioenriched Organosilanes from Enals and Bilyl Enones: Carbene Organocatalysis. <i>Angewandte Chemie</i> , 2018 , 130, 4684-4688	3.6	11
861	High-Performance All-Aryl Phenazasilines via Metal-Free Radical-Mediated C?H Silylation for Organic Light-Emitting Diodes. <i>Advanced Optical Materials</i> , 2018 , 6, 1701105	8.1	11
860	Pi-Extended Diindole-Fused Azapentacenone: Synthesis, Characterization, and Photophysical and Lithium-Storage Properties. <i>Chemistry - an Asian Journal</i> , 2016 , 11, 1382-7	4.5	11

(2006-2016)

859	Efficient synthesis and photovoltaic properties of highly rigid perylene-embedded benzothiazolyls. <i>Polymer Chemistry</i> , 2016 , 7, 780-784	4.9	11
858	Analysis of temperature-dependent electrical transport properties of nonvolatile organic field-effect transistor memories based on PMMA film as charge trapping layer. <i>Journal Physics D: Applied Physics</i> , 2016 , 49, 125104	3	11
857	Improving Efficiency of Blue Organic Light-Emitting Diode with Sulfobutylated Lignin Doped PEDOT as Anode Buffer Layer. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 2004-2011	8.3	11
856	Metal wire waveguide based all plasmonic refractive index sensor for terahertz frequencies. <i>Sensors and Actuators B: Chemical</i> , 2016 , 225, 115-120	8.5	11
855	Revealing Lectin-Sugar Interactions with a Single Au@Ag Nanocube. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 40944-40950	9.5	11
854	Oligo(p-phenyleneethynylene) embedded amphiphiles: synthesis, photophysical properties and self-assembled nanoparticles with high structural stability and photostability for cell imaging. <i>Polymer Chemistry</i> , 2014 , 5, 5598	4.9	11
853	First principles study of anti-ReO3 type Cu3N and Sc-doped Cu3N on structural, elastic and electronic properties. <i>Computational and Theoretical Chemistry</i> , 2013 , 1018, 71-76	2	11
852	A facile methodology for regulating the size of hexagonal NaYF4:Yb3+,Er3+ upconversion nanocrystals. <i>New Journal of Chemistry</i> , 2017 , 41, 11521-11524	3.6	11
851	Two-step reprecipitation method with size and zeta potential controllability for synthesizing semiconducting polymer nanoparticles. <i>Colloid and Polymer Science</i> , 2017 , 295, 1153-1164	2.4	11
850	White Electroluminescence with Simultaneous Three-Color Emission from a Four-Armed Star-Shaped Single-Polymer System. <i>Chinese Journal of Chemistry</i> , 2015 , 33, 873-880	4.9	11
849	Effects of Big Planar Anions on the Spin Transition of a Mononuclear Manganese(III) Complex with a Hexadentate Schiff-Base Ligand. <i>European Journal of Inorganic Chemistry</i> , 2015 , 2015, 2237-2244	2.3	11
848	Poly-(p-phenylene vinylenes) with pendent 2,4-difluorophenyl and fluorenyl moieties: Synthesis, characterization, and device performance. <i>Journal of Polymer Science Part A</i> , 2009 , 47, 2500-2508	2.5	11
847	A class of fascinating optoelectronic materials: Triarylboron compounds. <i>Science China Chemistry</i> , 2010 , 53, 1235-1245	7.9	11
846	Rod-like pyreneßerylene bisimide molecular triads: Synthesis and photophysical properties. Journal of Photochemistry and Photobiology A: Chemistry, 2010 , 211, 115-122	4.7	11
845	Characterization and third-order optical nonlinearities of uniform surface-modified CdS nanoparticles. <i>Talanta</i> , 1998 , 45, 735-8	6.2	11
844	Progress in long wavelength emission in fluorene-based electroluminescent blue materials. <i>Science in China Series B: Chemistry</i> , 2008 , 51, 497-520		11
843	High-efficiency blue-emitting organic light-emitting devices with 4, 4?, 4?-tris(N-carbazolyl)-triphenylamine as the hole/exciton-blocking layer. <i>Journal Physics D: Applied Physics</i> , 2006 , 39, 4987-4991	3	11
842	Photophysical properties and morphology of fluorene-alt-benzene based conjugated polymers. <i>Polymers for Advanced Technologies</i> , 2006 , 17, 544-551	3.2	11

841	Deposition of Well-Defined Fluoropolymer Nanospheres on PET Substrate by Plasma Polymerization of Heptadecafluorodecyl Acrylate and Their Potential Application as a Protective Layer. <i>Plasma Processes and Polymers</i> , 2005 , 2, 127-135	3.4	11
840	Synthesis, spectroscopy, and electrochemical properties of a novelpfi diblock poly(p-phenylenevinylene)-related copolymercontaining bipyridine. <i>Polymer</i> , 2001 , 42, 3949-3952	3.9	11
839	Crystallization Dynamics of Sn-Based Perovskite Thin Films: Toward Efficient and Stable Photovoltaic Devices. <i>Advanced Energy Materials</i> ,2102213	21.8	11
838	De Novo Design of Polymeric Carrier to Photothermally Release Singlet Oxygen for Hypoxic Tumor Treatment. <i>Research</i> , 2019 , 2019, 9269081	7.8	11
837	Unveiling the Effects of Interchain Hydrogen Bonds on Solution Gelation and Mechanical Properties of Diarylfluorene-Based Semiconductor Polymers. <i>Research</i> , 2020 , 2020, 3405826	7.8	11
836	DAD-type bipolar host materials with room temperature phosphorescence for high-efficiency green phosphorescent organic light-emitting diodes. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 1871-18	78 ^{.1}	11
835	Achieving multiple emission states and controllable response behaviour in thermochromic luminescent materials for security applications. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 10798-10804	7.1	11
834	Jahn-Teller distortions boost the ultrahigh areal capacity and cycling robustness of holey NiMn-hydroxide nanosheets for flexible energy storage devices. <i>Nanoscale</i> , 2020 , 12, 22075-22081	7.7	11
833	The incorporation of expanded 1T-enriched MoS2 boosts hybrid fiber improved charge storage capability. <i>Carbon</i> , 2020 , 170, 543-549	10.4	11
832	Electrochemiluminescence aptasensor for Siglec-5 detection based on MoS@Au nanocomposites emitter and exonuclease III-powered DNA walker. <i>Sensors and Actuators B: Chemical</i> , 2021 , 334, 129592	8.5	11
831	Full-frame and high-contrast smart windows from halide-exchanged perovskites. <i>Nature Communications</i> , 2021 , 12, 3360	17.4	11
830	Solution processed single-emissive-layer white organic light-emitting diodes based on fluorene host: Balanced consideration for color quality and electroluminescent efficiency. <i>Organic Electronics</i> , 2016 , 33, 235-245	3.5	11
829	Poly(3,4-ethylenedioxythiophene):sulfonated acetone-formaldehyde: preparation, characterization and performance as a hole injection material. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 8077-8085	7.1	11
828	A bipolar macrospirocyclic oligomer based on triphenylamine and 4,5-diazafluorene as a solution-processable host for blue phosphorescent organic light-emitting diodes. <i>Dyes and Pigments</i> , 2016 , 134, 348-357	4.6	11
827	Deep-red fluorogenic probe for rapid detection of nitric oxide in Parkinson disease models. <i>Sensors and Actuators B: Chemical</i> , 2019 , 283, 769-775	8.5	11
826	A reversible fluorescent probe for directly monitoring protein-small molecules interaction utilizing vibration-induced emission. <i>Dyes and Pigments</i> , 2019 , 163, 425-432	4.6	11
825	Packed anode derived from cocklebur fruit for improving long-term performance of microbial fuel cells. <i>Science China Materials</i> , 2019 , 62, 645-652	7.1	11
824	Recent nanosheet-based materials for monovalent and multivalent ions storage. <i>Energy Storage Materials</i> , 2020 , 25, 382-403	19.4	11

823	Atomic-thin hexagonal CuCo nanocrystals with d-band tuning for CO2 reduction. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 7496-7502	13	11
822	Three-phase electric power driven electoluminescent devices. <i>Nature Communications</i> , 2021 , 12, 54	17.4	11
821	Annealing Solution-Processed CuSCN Hole Injection Layer for Blue Phosphorescent Organic Light-Emitting Diodes with Extremely Low Efficiency Roll-Off. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 17178-17183	8.3	11
820	Two-dimensional transition metal carbides and/or nitrides (MXenes) and their applications in sensors. <i>Materials Today Physics</i> , 2021 , 21, 100527	8	11
819	Fully sustainable and high-performance fish gelatin-based triboelectric nanogenerator for wearable movement sensing and human-machine interaction. <i>Nano Energy</i> , 2021 , 89, 106329	17.1	11
818	Two-dimensional conjugated microporous polymer films: fabrication strategies and potential applications. <i>Polymer Chemistry</i> , 2021 , 12, 807-821	4.9	11
817	Two bipolar blue-emitting fluorescent materials based on 1,3,5-triazine and peripheral pyrene for organic light-emitting diodes. <i>Dyes and Pigments</i> , 2017 , 145, 43-53	4.6	10
816	Self-assembled nanoparticles based on a cationic conjugated polymer/hyaluronandisplatin complex as a multifunctional platform for simultaneous tumor-targeting cell imaging and drug delivery. <i>New Journal of Chemistry</i> , 2017 , 41, 4998-5006	3.6	10
815	High-Performance and Hysteresis-Free Planar Solar Cells with PC71BM and C60 Composed Structure Prepared Irrespective of Humidity. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 9718-9	82 ³ 4	10
814	Access to Highly Functionalized Indanes from Arynes and 冊Diketo Esters. <i>Organic Letters</i> , 2019 , 21, 941-945	6.2	10
813	Prompt Electrodeposition of Ni Nanodots on Ni Foam to Construct a High-Performance Water-Splitting Electrode: Efficient, Scalable, and Recyclable. <i>Nano-Micro Letters</i> , 2019 , 11, 41	19.5	10
812	Mitochondria-Targeted Two-Photon Fluorescent Photosensitizers for Cancer Cell Apoptosis via Spatial Selectability. <i>Advanced Healthcare Materials</i> , 2019 , 8, e1900212	10.1	10
811	Stable, Efficient Near-Infrared Light-Emitting Diodes Enabled by 在Phase Modulation. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 2101-2107	6.4	10
810	Efficient conversion from UV light to near-IR emission in Yb3+-doped triple-layered perovskite CaLaNb3O10. <i>Materials Research Bulletin</i> , 2015 , 64, 425-431	5.1	10
809	One-pot synthesis of benzoxaborole derivatives from the palladium-catalyzed cross-coupling reaction of alkoxydiboron with unprotected o-bromobenzylalcohols. <i>Organic and Biomolecular Chemistry</i> , 2015 , 13, 11362-8	3.9	10
808	Molecular rearrangement at charged states: Intrinsic effects upon photo and electroluminescence. <i>Dyes and Pigments</i> , 2015 , 113, 529-535	4.6	10
807	Robust and Transient Write-Once-Read-Many-Times Memory Device Based on Hybrid Perovskite Film with Novel Room Temperature Molten Salt Solvent. <i>Advanced Electronic Materials</i> , 2020 , 6, 200010	6.4	10
806	Rational design of near-infrared platinum(II)-acetylide conjugated polymers for photoacoustic imaging-guided synergistic phototherapy under 808 nm irradiation. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 7356-7364	7.3	10

805	Structure-function correlations in mononuclear manganese(iii) spin crossover systems with a big conjugated hexadentate Schiff-base ligand. <i>Dalton Transactions</i> , 2020 , 49, 4293-4305	4.3	10
804	Two-dimensional Ruddlesden P opper layered perovskite for light-emitting diodes. <i>APL Materials</i> , 2020 , 8, 040901	5.7	10
803	Sandwich-Structured Fe-Ni2P/MoSx/NF Bifunctional Electrocatalyst for Overall Water Splitting. <i>Advanced Materials Interfaces</i> , 2020 , 7, 1901926	4.6	10
802	Wafer-Scale Ultrathin Two-Dimensional Conjugated Microporous Polymers: Preparation and Application in Heterostructure Devices. <i>ACS Applied Materials & Devices</i> , 2018, 10, 4010-4017	9.5	10
801	An ultra-low bandgap diketopyrrolopyrrole (DPP)-based polymer with balanced ambipolar charge transport for organic field-effect transistors. <i>RSC Advances</i> , 2016 , 6, 78720-78726	3.7	10
800	Vanadium Carbide Based Composite for High Performance Oxygen Reduction Reaction and Lithium Ion Batteries. <i>ChemistrySelect</i> , 2016 , 1, 2682-2686	1.8	10
799	Macrocyclic Se4N2[7,7]ferrocenophane and Se2N[10]ferrocenophane containing benzyl unit: synthesis, complexation, crystal structures, electrochemical and optical properties. <i>Dalton Transactions</i> , 2016 , 45, 3417-28	4.3	10
798	Towards efficient perovskite light-emitting diodes: A multi-step spin-coating method for a dense and uniform perovskite film. <i>Organic Electronics</i> , 2018 , 61, 18-24	3.5	10
797	Square Knot Resonator-Based Compact Bending Sensor. <i>IEEE Photonics Technology Letters</i> , 2018 , 30, 1649-1652	2.2	10
7 96	A long-cycling anode based on a coral-like Sn nanostructure with a binary binder. <i>Chemical Communications</i> , 2019 , 55, 10460-10463	5.8	10
795	Access to Enantioenriched Spiro-?-Lactam Oxindoles by an N-Heterocyclic Carbene-Catalyzed [4+3] Annulation of Flexible Oxotryptamines with Enals. <i>Chemistry - A European Journal</i> , 2019 , 25, 11223-112	2 1 .8	10
794	Three-dimensional lanthanide metalörganic frameworks with the fluorene-based carboxylate ligands: Syntheses, structures, and properties. <i>Inorganica Chimica Acta</i> , 2014 , 413, 38-44	2.7	10
793	Highly efficient CII cross-coupling for installing thiophene rings into Econjugated systems. <i>Organic Chemistry Frontiers</i> , 2014 , 1, 817-820	5.2	10
792	Highly efficient solution-processed phosphorescent organic light-emitting devices with double-stacked hole injection layers. <i>Journal of Applied Physics</i> , 2017 , 122, 065304	2.5	10
791	Poly(sodium 4-styrenseulfonate)-modified monolayer graphene for anode applications of organic photovoltaic cells. <i>Applied Physics Letters</i> , 2017 , 111, 113302	3.4	10
790	Electrochemical sensor based on a silver nanowires modified electrode for the determination of cholesterol. <i>Analytical Methods</i> , 2015 , 7, 5649-5653	3.2	10
789	The structural, electronic, and optical properties of ladder-type polyheterofluorenes: a theoretical study. <i>Journal of Molecular Modeling</i> , 2012 , 18, 4929-39	2	10
788	Aromatic Molecules Doping in Single-Layer Graphene Probed by Raman Spectroscopy and Electrostatic Force Microscopy. <i>Japanese Journal of Applied Physics</i> , 2010 , 49, 01AH04	1.4	10

787	Macrospirocyclic oligomers based on carbazole and fluorene. Organic Letters, 2011, 13, 200-3	6.2	10
786	Highly improved electroluminescence from double-layer devices based on a carbazole-functionalized europium3+ complex. <i>Applied Physics A: Materials Science and Processing</i> , 2009 , 95, 595-600	2.6	10
7 ⁸ 5	Enhancement of Photocatalytic Oxidation Activity by Surface-Modified CdS Nanoparticles of High Photostability. <i>Chemistry Letters</i> , 1997 , 26, 751-752	1.7	10
784	Room temperature Coulomb staircase on pure and uniform surface-capped gold nanoparticles. <i>Chemical Physics Letters</i> , 1998 , 287, 47-52	2.5	10
783	Color tunable organic light-emitting diodes using coumarin dopants. <i>Research on Chemical Intermediates</i> , 2008 , 34, 249-256	2.8	10
782	Improved performances in top-emitting organic light-emitting diodes based on a semiconductor zinc oxide buffer layer. <i>Journal of Luminescence</i> , 2008 , 128, 1143-1147	3.8	10
781	Synthesis and characterization of a novel water-soluble block copolymer with a rodioil structure. <i>Materials Letters</i> , 2006 , 60, 679-684	3.3	10
780	Effect of precursor solutions with different composition on synthesis of ultrafine BaLa0.3Fe11.7O19 using sol-gel auto-combustion technique. <i>Journal of Materials Science</i> , 2004 , 39, 987	7- 9 31	10
779	White Light Electroluminescence from a Dendritic Europium Complex. Chemistry Letters, 2005, 34, 688-	-6 8.9	10
778	Synthesis and characterization of a novel poly(p-phenylenevinylene) derivative carrying an oxadiazole side chain with improved electron affinity. <i>Thin Solid Films</i> , 2000 , 363, 106-109	2.2	10
777	Novel blue photoluminescent copolymers containing bipyridine and organosilicon. <i>Synthetic Metals</i> , 2000 , 114, 101-104	3.6	10
776	Investigation of the surface structures and dynamics of polyethylene terephthalate (PET) modified by fluorocarbon plasmas. <i>Surface and Interface Analysis</i> , 1999 , 28, 16-19	1.5	10
775	Intense green light from a silyl-substituted poly(p-phenylenevinylene)-based light-emitting diode with air-stable cathode. <i>Physical Chemistry Chemical Physics</i> , 1999 , 1, 3789-3792	3.6	10
774	Resonance-mediated dynamic modulation of perovskite crystallization for efficient and stable solar cells. <i>Advanced Materials</i> , 2021 , e2107111	24	10
773	Recyclable and Flexible Dual-Mode Electronics with Light and Heat Management. <i>ACS Nano</i> , 2020 , 14, 6707-6714	16.7	10
772	Tetrazole-based porous metal-organic frameworks for selective CO adsorption and isomerization studies. <i>Dalton Transactions</i> , 2020 , 49, 2145-2150	4.3	10
771	Multiple Passivation of Electronic Defects for Efficient and Stable Perovskite Solar Cells. <i>Solar Rrl</i> , 2020 , 4, 2000481	7.1	10
770	Oriented Perovskite Crystal towards Efficient Charge Transport in FASnI3 Perovskite Solar Cells. <i>Solar Rrl</i> , 2020 , 4, 2000153	7.1	10

769	Organic NIR-II Photoacoustic Agent Utilizing Combined Two-Photon and Excited State Absorption at 1064 nm. <i>ACS Photonics</i> , 2020 , 7, 3161-3165	6.3	10
768	Recent Progress of Two-Dimensional Metal-Organic Frameworks and Their Derivatives for Oxygen Evolution Electrocatalysis. <i>ChemElectroChem</i> , 2020 , 7, 4695-4712	4.3	10
767	Soluble triarylamine functionalized symmetric viologen for all-solid-state electrochromic supercapacitors. <i>Science China Chemistry</i> , 2020 , 63, 1632-1644	7.9	10
766	Emerging Organic/Hybrid Photovoltaic Cells for Indoor Applications: Recent Advances and Perspectives. <i>Solar Rrl</i> , 2021 , 5, 2100042	7.1	10
765	Nonequilibrium Ti4+ Doping Significantly Enhances the Performance of Fe2O3 Photoanodes by Quenching. <i>ChemNanoMat</i> , 2016 , 2, 652-655	3.5	10
764	A novel electrochemical biosensor for detection of cholesterol. <i>Russian Journal of Electrochemistry</i> , 2016 , 52, 239-244	1.2	10
763	DA conjugated polymers based on thieno[3,2-b]indole (TI) and 2,1,3-benzodiathiazole (BT) derivatives: synthesis, characterization and side-chain influence on photovoltaic properties. <i>RSC Advances</i> , 2016 , 6, 45873-45883	3.7	10
762	Thickness Dependence of Carrier Mobility and the Interface Trap Free Energy Investigated by Impedance Spectroscopy in Organic Semiconductors. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 17184-	1 3 7889	10
761	Solution processed nano-ZnMgO interfacial layer for highly efficient inverted perovskite solar cells. Journal of Energy Chemistry, 2019 , 28, 107-110	12	10
760	Mesh-like vertical structures enable both high areal capacity and excellent rate capability. <i>Journal of Energy Chemistry</i> , 2021 , 53, 226-233	12	10
759	Efficient and Stable Perovskite Solar Cells by Fluorinated Ionic LiquidInduced Component Interaction. <i>Solar Rrl</i> , 2021 , 5, 2000582	7.1	10
758	A color-tunable single molecule white light emitter with high luminescence efficiency and ultra-long room temperature phosphorescence. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 727-735	7.1	10
757	Recent Advances in Molybdenum-Based Materials for Lithium-Sulfur Batteries. <i>Research</i> , 2021 , 2021, 5130420	7.8	10
756	Variable segment roles: modulation of the packing modes, nanocrystal morphologies and optical emissions. <i>Nanoscale</i> , 2018 , 10, 13310-13314	7.7	10
755	Phenylquinoline fused cyclic derivatives as electron acceptors of exciplex forming hosts for solution-processable red phosphorescent OLEDs. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 8035-8041	7.1	10
754	Recent progress of flexible electronics by 2D transition metal dichalcogenides. <i>Nano Research</i> ,1	10	10
753	Lead monoxide: a two-dimensional ferromagnetic semiconductor induced by hole-doping. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 4520-4525	7.1	9
75 ²	An unusual photoconductive property of polyiodide and enhancement by catenating with 3-thiophenemethylamine salt. <i>Chemical Communications</i> , 2016 , 53, 432-435	5.8	9

751	Photocontrollable fluorogenic probes for visualising near-membrane copper(II) in live cells. <i>RSC Advances</i> , 2017 , 7, 31093-31099	3.7	9
75°	Lanthanide-organic frameworks based on terphenyl-tetracarboxylate ligands: syntheses, structures, optical properties and selective sensing of nitro explosives. <i>Science China Chemistry</i> , 2017 , 60, 1130-1135	7.9	9
749	First-principles prediction of Tl/SiC for valleytronics. Journal of Materials Chemistry C, 2017, 5, 10427-10	433	9
748	Ultrasensitive detection of transcription factors with a highly-efficient diaminoterephthalate fluorophore via an electrogenerated chemiluminescence strategy. <i>Chemical Communications</i> , 2019 , 55, 11892-11895	5.8	9
747	Tuning the Connectivity, Rigidity, and Functionality of Two-Dimensional Zr-Based Metal-Organic Frameworks. <i>Inorganic Chemistry</i> , 2019 , 58, 12748-12755	5.1	9
746	Structure-Based Specific Detection and Inhibition of Monoamine Oxidases and Their Applications in Central Nervous System Diseases. <i>ChemBioChem</i> , 2019 , 20, 1487-1497	3.8	9
745	A novel structure of grid spirofluorene: a new organic semiconductor with low reorganization energy. <i>New Journal of Chemistry</i> , 2019 , 43, 7790-7796	3.6	9
744	Nitrogen Boosts Defective Vanadium Oxide from Semiconducting to Metallic Merit. <i>Small</i> , 2019 , 15, e1	9 00 58	3 9
743	Bright white-light emission and multicolor outputs in time domain from a core-shell structured microcrystal. <i>Journal of Alloys and Compounds</i> , 2019 , 787, 1120-1127	5.7	9
742	Photo-induced storage and mask-free arbitrary micro-patterning in solution-processable and simple-structured photochromic organic light-emitting diodes. <i>Organic Electronics</i> , 2015 , 26, 476-480	3.5	9
741	Non-Conjugated Polymer Based on Polyethylene Backbone as Dopant-Free Hole-Transporting Material for Efficient and Stable Inverted Quasi-2D Perovskite Solar Cells. <i>Solar Rrl</i> , 2020 , 4, 2000184	7.1	9
740	Highly efficient solution-processed red phosphorescent organic light-emitting diodes employing an interface exciplex host. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 9909-9915	7.1	9
739	Photoluminescence Emission during Photoreduction of Graphene Oxide Sheets as Investigated with Single-Molecule Microscopy. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 7914-7921	3.8	9
738	Multifunctional Polymer Memory via Bi-Interfacial Topography for Pressure Perception Recognition. <i>Advanced Science</i> , 2020 , 7, 1902864	13.6	9
737	A Phototheranostic Strategy to Continuously Deliver Singlet Oxygen in the Dark and Hypoxic Tumor Microenvironment. <i>Angewandte Chemie</i> , 2020 , 132, 8918-8923	3.6	9
736	A ferrocene?europium assembly showing phototriggered anticancer activity and fluorescent modality imaging. <i>Dalton Transactions</i> , 2018 , 47, 1479-1487	4.3	9
735	A water-soluble conjugated polymer with azobenzol side chains based on Eurn-onleffect for hypoxic cell imaging. <i>Polymer Chemistry</i> , 2016 , 7, 6890-6894	4.9	9
734	Direct CH arylation for various Ar-cored diketopyrrolopyrrole containing small molecules in solution-processed field-effect transistors. <i>RSC Advances</i> , 2016 , 6, 57163-57173	3.7	9

733	One-pot synthesis of a photostable green fluorescent probe for biological imaging. <i>Journal of Materials Science</i> , 2016 , 51, 2972-2979	4.3	9
73²	Detection of trapped charges in the blend films of polystyrene/SFDBAO electrets by electrostatic and Kelvin probe force microscopy. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 9412-8	3.6	9
731	Self-Assembly Rules of Dumbbell-Shaped Molecules and Their Effect on Morphology and Photophysical Behaviors of Micro/Nanocrystals. <i>Crystal Growth and Design</i> , 2018 , 18, 4822-4828	3.5	9
730	Synthesis, characterization and charge storage properties of Ebiindolo[2,3-b]quinoxaline for solution-processing organic transistor memory. <i>Dyes and Pigments</i> , 2019 , 167, 255-261	4.6	9
729	Morphology control of organic halide perovskites by adding BiFeO nanostructures for efficient solar cell. <i>Scientific Reports</i> , 2019 , 9, 15441	4.9	9
728	Study of carrier dynamics of N,N?-diphenyl-N,N?bis (1,1?-biphenyl)-4,4?-diamine (NPB) through the frequency dependence of impedance spectroscopy and particle swarm optimization algorithm. <i>EPJ Applied Physics</i> , 2014 , 66, 10202	1.1	9
727	Study of carrier mobility of N,N?-diphenyl-N,N?bis(1,1?-biphenyl)-4,4?-diamine (NPB) by transmission line model of impedance spectroscopy. <i>Thin Solid Films</i> , 2013 , 542, 281-284	2.2	9
726	Thieno[3, 2-b]thiophene-Based Discotic Liquid Crystal Mesogens: Rational Synthesis, Physical Properties and Self-Assembly. <i>ChemistrySelect</i> , 2017 , 2, 8137-8145	1.8	9
725	Novel phosphorescent neutral iridium(III) complex with the steric hindrance for highly efficient red organic light-emitting diodes. <i>Tetrahedron Letters</i> , 2017 , 58, 3598-3601	2	9
724	Ladder-type nonacyclic indacenodithieno[3,2-b]indole for highly efficient organic field-effect transistors and organic photovoltaics. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 8988-8998	7.1	9
723	Highly Sensitive Fluorometric Turn-On Detection of Lysozyme Based on a Graphene Oxide/ssDNA Assembly. <i>IEEE Sensors Journal</i> , 2017 , 17, 5431-5436	4	9
722	Fluorene-based hyperbranched copolymers with spiro[3.3]heptane-2,6-dispirofluorene as the conjugation-uninterrupted branching point and their application in WPLEDs. <i>New Journal of Chemistry</i> , 2015 , 39, 5977-5983	3.6	9
721	Stable and good color purity white light-emitting devices based on random fluorene/spirofluorene copolymers doped with iridium complex. <i>Journal of Polymer Science, Part B: Polymer Physics,</i> 2012 , 50, 180-188	2.6	9
720	Proton-transfer supramolecular salts resulting from 3,5-dinitrobenzoic acid and aminomethyl pyridine. <i>New Journal of Chemistry</i> , 2012 , 36, 1884	3.6	9
719	Diarylfluorenes-based Estacked molecules: synthesis, X-ray crystallography, and supramolecular light-emitting devices. <i>Tetrahedron</i> , 2013 , 69, 6317-6322	2.4	9
718	Chemical vapor deposition of amorphous graphene on ZnO film. <i>Synthetic Metals</i> , 2013 , 174, 50-53	3.6	9
717	Structure optimization of organic planar heterojunction solar cells. <i>Journal Physics D: Applied Physics</i> , 2013 , 46, 195105	3	9
716	Improving working lifetime and efficiency of phosphor doped organic light-emitting diodes. <i>Optics Express</i> , 2013 , 21, 17020-7	3.3	9

(2020-2013)

715	A ratiometric probe composed of an anionic conjugated polyelectrolyte and a cationic phosphorescent iridium(III) complex for time-resolved detection of Hg(II) in aqueous media. <i>Macromolecular Bioscience</i> , 2013 , 13, 1339-46	5.5	9
714	Dynamically Adaptive Characteristics of Resonance Variation for Selectively Enhancing Electrical Performance of Organic Semiconductors. <i>Angewandte Chemie</i> , 2013 , 125, 10685-10689	3.6	9
713	Supramolecular Assemblies of Tetrahydroxyloligo(phenyleneethynylene) with Cross-Shaped Side Chains and Its Coadsorption with Diacids on Graphite. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 11460	-1 ³ 1 ⁸ 465	; 9
712	Electronic transport characteristics in silicon nanotube field-effect transistors. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2011 , 43, 1655-1658	3	9
711	Efficient top-emitting white organic light emitting device with an extremely stable chromaticity and viewing-angle. <i>Chinese Physics B</i> , 2012 , 21, 108507	1.2	9
710	Synthesis and Properties of Triphenylamine- and 9-Phenylcarbazole-cored Star-shaped Terfluorenes: Understanding the Effect of Molecular Dimensionality. <i>Chemistry Letters</i> , 2009 , 38, 392-3	9 1 .7	9
709	Theoretical investigation of the tunable behavior of p-n copolymers based on oligothiophenes and 1,4-bis(oxadiazolyl)-benzene. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 23750-5	3.4	9
708	Synthesis of polyfluorene derivatives through polymer reaction. <i>Optical Materials</i> , 2003 , 21, 125-133	3.3	9
707	Theoretical study of the structure and torsional potential of substituted biphenylenes and their fluorene derivatives. <i>Physical Chemistry Chemical Physics</i> , 2002 , 4, 3959-3964	3.6	9
706	Poly [9-methyl-9-(4-cyanobutyl)fluorene] Synthesis towards Water-soluble Polyfluorenes. <i>Thin Solid Films</i> , 2000 , 363, 332-335	2.2	9
705	Formation of FeSi and FeSi2 films from cis-Fe(SiCl3)2(CO)4 by MOCVD precursor versus substrate control. <i>Inorganica Chimica Acta</i> , 1999 , 291, 380-387	2.7	9
704	Synthesis and properties of polybisthienylphenylene derivatives as electroluminescent materials: improving of the photoluminescent quantum yields. <i>Acta Polymerica</i> , 1999 , 50, 327-331		9
703	Highly Emissive and Stable Five-Coordinated Manganese(II) Complex for X-Ray Imaging. <i>Laser and Photonics Reviews</i> , 2021 , 15, 2100309	8.3	9
702	Embedding Silver Nanowires into a Hydroxypropyl Methyl Cellulose Film for Flexible Electrochromic Devices with High Electromechanical Stability. <i>ACS Applied Materials & amp; Interfaces</i> , 2021 , 13, 1735-1742	9.5	9
701	Constructing stable phenalenyl-based neutral radicals: a theoretical study. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 12224-12230	7.1	9
700	Resonance-driven dynamically bipolar organic semiconductors for high-performance optoelectronic applications. <i>Materials Horizons</i> , 2020 , 7, 3298-3304	14.4	9
699	Adjusting the lipid-water distribution coefficient of iridium(III) complexes to enhance the cellular penetration and treatment efficacy to antagonize cisplatin resistance in cervical cancer. <i>Dalton Transactions</i> , 2020 , 49, 11556-11564	4.3	9
698	Sodium pyruvate as a peroxide scavenger in aerobic oxidation under carbene catalysis. <i>Green Chemistry</i> , 2020 , 22, 6819-6826	10	9

697	Multifunctional shape-dependent plasmonic nanoprobe by enzymatic etching of single gold triangular nanoplate. <i>Nano Research</i> , 2020 , 13, 3364-3370	10	9
696	A Schiff base-functionalized graphene quantum dot nanocomposite for preferable picric acid sensing. <i>Dyes and Pigments</i> , 2021 , 191, 109355	4.6	9
695	Highly Contorted 1,2,5-Thiadiazole-Fused Aromatics for Solution-Processed Field-Effect Transistors: Synthesis and Properties. <i>Chemistry - an Asian Journal</i> , 2016 , 11, 2188-200	4.5	9
694	A series of porphyrins as interfacial materials for inverted perovskite solar cells. <i>Organic Electronics</i> , 2020 , 77, 105522	3.5	9
693	Low Threshold Amplified Spontaneous Emission from Efficient Energy Transfer in Blends of Conjugated Polymers. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 8576-8583	3.8	9
692	Strain Engineering of MetalHalide Perovskites toward Efficient Photovoltaics: Advances and Perspectives. <i>Solar Rrl</i> , 2021 , 5, 2000672	7.1	9
691	Breaching Kasha's rule for dual emission: mechanisms, materials and applications. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 10154-10172	7.1	9
690	Carbazole/phenylpyridine hybrid compound as dual role of efficient host and ligand of iridium complex: Well matching of host-dopant for solution-processed green phosphorescent OLEDs. <i>Dyes and Pigments</i> , 2018 , 150, 130-138	4.6	9
689	Synthesis and Application of Perylene-Embedded Benzoazoles for Small-Molecule Organic Solar Cells. <i>Organic Letters</i> , 2018 , 20, 6376-6379	6.2	9
688	Micro-supercapacitors based on oriented coordination polymer thin films for AC line-filtering <i>RSC Advances</i> , 2018 , 8, 30624-30628	3.7	9
687	Sulfonic Zwitterion for Passivating Deep and Shallow Level Defects in Perovskite Light-Emitting Diodes. <i>Advanced Functional Materials</i> ,2111578	15.6	9
686	Novel hyperbranched polymers as host materials for green thermally activated delayed fluorescence OLEDs. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2017 , 35, 490-502	3.5	8
685	One-step preparation of conjugated homopolymer sub-microspheres via a controllable supramolecular approach toward optoelectronic applications. <i>RSC Advances</i> , 2017 , 7, 14688-14693	3.7	8
684	Impact of Fluorine Atoms on Perylene Diimide Derivative for Fullerene-Free Organic Photovoltaics. <i>Chemistry - an Asian Journal</i> , 2017 , 12, 2052-2056	4.5	8
683	Fluorescent Poly(glycerol-co-sebacate) Acrylate Nanoparticles for Stem Cell Labeling and Longitudinal Tracking. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 9528-9538	9.5	8
682	A Macrospirocyclic Carbazole E luorene Oligomer as a Solution-Processable Matrix Host Material for Blue Phosphorescent Organic Light-Emitting Diodes with Low Turn-On Voltage and Efficiency Roll-Off. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 8692-8702	3.8	8
681	Compact Spectrometer Based on a Frosted Glass. <i>IEEE Photonics Technology Letters</i> , 2017 , 29, 217-220	2.2	8
680	High-color-quality white electroluminescence and amplified spontaneous emission from a star-shaped single-polymer system with simultaneous three-color emission. <i>Polymer Chemistry</i> , 2017 , 8, 851-859	4.9	8

679	Insights into the growth mechanism of REF (RE = La-Lu, Y) nanocrystals: hexagonal and/or orthorhombic. <i>Nanoscale</i> , 2017 , 9, 15974-15981	7.7	8
678	Centimeter-scale subwavelength photolithography using metal-coated elastomeric photomasks with modulated light intensity at the oblique sidewalls. <i>Langmuir</i> , 2015 , 31, 5005-13	4	8
677	Ni0.33Co0.66(OH)F hollow hexagons woven by MWCNTs for high-performance lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 20690-20697	13	8
676	Unprecedented side reactions in Stille coupling: desired ones for Stille polycondensation. <i>Chemical Communications</i> , 2015 , 51, 15846-9	5.8	8
675	Novel phosphorescent iridium(III) complexes containing 2-thienyl quinazoline ligands: synthesis, photophysical properties and theoretical calculations. <i>RSC Advances</i> , 2015 , 5, 97841-97848	3.7	8
674	A Rapid Synthesis of High Aspect Ratio Silver Nanowires for High-Performance Transparent Electrodes. <i>Chinese Journal of Chemistry</i> , 2015 , 33, 147-151	4.9	8
673	Approaching an adjustable organic thermochromic luminophore library via the synergistic effects between structure-related molecular dynamics and aggregation-related luminescence. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 8430-8439	7.1	8
672	Interpenetrated Metal-Organic Frameworks with Topology and Versatile Functions. <i>ACS Applied Materials & Acs Acc Applied Materials & Acs Applied Materials & Acc Applied & Acc Applied Materials & Acc Applied &</i>	9.5	8
671	Tuning optical properties of monolayer MoS2 through the 0D/2D interfacial effect with C60 nanoparticles. <i>Applied Surface Science</i> , 2020 , 523, 146371	6.7	8
670	Friedel-Crafts arylmethylation: A simple approach to synthesize bipolar host materials for efficient electroluminescence. <i>Organic Electronics</i> , 2016 , 38, 370-378	3.5	8
669	Fluorinated p-n type copolyfluorene as polymer electret for stable nonvolatile organic transistor memory device. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2016 , 34, 1183-1195	3.5	8
668	Extended Star-Shaped Polycyclic Aromatic Hydrocarbons based on Fused Truxenes: Synthesis, Self-Assembly, and Facilely Tunable Emission Properties. <i>Chemistry - an Asian Journal</i> , 2016 , 11, 3589-35	9 7 ⁵	8
667	Pyrene-functionalized oligofluorenes as non-doped deep blue emitters for solution-processed organic light-emitting diodes. <i>Journal of Polymer Science Part A</i> , 2016 , 54, 795-801	2.5	8
666	Controllable supramolecular chain aggregation through nano-steric hindrance functionalization for multi-color larger-area electroluminescence. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 7018-7023	7.1	8
665	Conjugated Nanopolymer Based on a Nanogrid: Approach toward Stable Polyfluorene-Type Fluorescent Emitter for Blue Polymer Light-Emitting Diodes. <i>ACS Applied Polymer Materials</i> , 2019 , 1, 2441-2449	4.3	8
664	A Universal Strategy for Stretchable Polymer Nonvolatile Memory via Tailoring Nanostructured Surfaces. <i>Scientific Reports</i> , 2019 , 9, 10337	4.9	8
663	Hybrid fluorophores-based fluorogenic paper device for visually high-throughput detection of Cu2+ in real samples. <i>Dyes and Pigments</i> , 2019 , 170, 107639	4.6	8
662	Asymmetric Synthesis of Enantioenriched 6-Hydroxyl Butyrolactams Promoted by N-Heterocyclic Carbene. <i>Journal of Organic Chemistry</i> , 2019 , 84, 10328-10337	4.2	8

661	Facile brush-coated phase poly(9,9-dioctylfluorene) films for efficient and stable pure-blue polymer light-emitting diodes. <i>Organic Electronics</i> , 2019 , 75, 105380	3.5	8
660	Cyclopropanation of Fluorinated Sulfur Ylides with 1-Azadienes: Facile Synthesis of CF3-Substituted Spiro Scaffolds. <i>Asian Journal of Organic Chemistry</i> , 2019 , 8, 2175-2179	3	8
659	Regioisomerism effect (RIE) on optimizing ultralong organic phosphorescence lifetimes. <i>Chinese Chemical Letters</i> , 2019 , 30, 1974-1978	8.1	8
658	Effects of Electrodes and Nitrogen-Atom Locations on Electron Transport in C59N Molecular Junctions: A First-Principles Study. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 617-626	3.8	8
657	Fluorescence Turn-On Sensing of Ascorbic Acid Based on a Hyperbranched Conjugated Polyelectrolyte. <i>Soft Materials</i> , 2014 , 12, 73-78	1.7	8
656	Rod-coating all-solution fabrication of double functional graphene oxide films for flexible alternating current (AC)-driven light-emitting diodes. <i>RSC Advances</i> , 2014 , 4, 55671-55676	3.7	8
655	Relationships between main-chain chirality and photophysical properties in chiral conjugated polymers. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 7336-7347	7.1	8
654	Ab initio calculations of the structural, elastic, electronic and optical properties of Cu3N as well as Cu3NLa and Cu3NCe compounds. <i>Computational Materials Science</i> , 2014 , 95, 221-227	3.2	8
653	Substitution effects on the properties of 10,13-disubstituted dipyrido[3,2-a:2?,3?-c]phenazine donor\(\text{donor\text{\text{B}}}\) complexes. \(\text{Tetrahedron}, \text{2015}, 71, 654-662 \)	2.4	8
652	Synthesis, characterization and properties of covalently linked porphyrinflaphthalimide pentamer and its metal complexes. <i>Journal of Molecular Structure</i> , 2014 , 1074, 687-694	3.4	8
651	Application of capacitance spectrum and the imaginary part of impedance spectrum to study carrier dynamics of N,N?-diphenyl-N,N?bis(1,1?-biphenyl)-4,4?-diamine. <i>Thin Solid Films</i> , 2014 , 556, 447-4	.5 ² 1 ²	8
650	Novel amphipathic photoluminescent copolymers containing fluorene, pyridine and thiophene moieties: Synthesis, characterization and self-assembly. <i>Polymer</i> , 2012 , 53, 5684-5690	3.9	8
649	DFT/TDDFT investigation of the modulation of photochromic properties in an organoboron-based diarylethene by fluoride ions. <i>ChemPhysChem</i> , 2011 , 12, 313-21	3.2	8
648	High-contrast top-emitting organic light-emitting diodes with a Ni/ZnS/CuPc/Ni contrast-enhancing stack and a ZnS anti-reflection layer. <i>Journal Physics D: Applied Physics</i> , 2010 , 43, 365101	3	8
647	Synthesis, characterization and applications of vinylsilafluorene copolymers: New host materials for electroluminescent devices. <i>Science China Chemistry</i> , 2010 , 53, 2329-2336	7.9	8
646	Nonresonant optical nonlinearity of ZnO composite nanoparticles with different interfacial chemical environments. <i>Materials Research Innovations</i> , 1998 , 2, 49-52	1.9	8
645	Size-Controllable Enhanced Energy Transfer from an Amphiphilic ConjugatedIbnic Triblock Copolymer to CdTe Quantum Dots in Aqueous Medium. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 7278	3 ⁸ 283	8
644	Synthesis and Characterization of Novel Monodisperse Starburst Oligo(fluoreneethynylene) Based on Truxene Moiety. <i>Chemistry Letters</i> , 2008 , 37, 178-179	1.7	8

643	The dissociative adsorption of unsaturated alcohols on Si(1 1 1)-7\overline{a}. Surface Science, 2008, 602, 2647-26.	57. 8	8
642	Synthesis, Photophysics, and Electroluminescence of Poly(dibenzofluorene)s. <i>Macromolecular Rapid Communications</i> , 2006 , 27, 1142-1148	4.8	8
641	Novel oligomers based on fluorene and 2,4-difluorobenzene: Correlation between the structures and optical properties. <i>Journal of Polymer Science Part A</i> , 2006 , 44, 4346-4353	2.5	8
640	New pfl diblock and triblock oligomers: effective tuning of HOMO/LUMO energy levels. <i>Tetrahedron Letters</i> , 2006 , 47, 2829-2833	2	8
639	Chemical states and electronic properties of the interface between aluminium and a photoluminescent conjugated copolymer containing europium complex. <i>Applied Surface Science</i> , 2004 , 222, 399-408	6.7	8
638	Analysis of bipyridyl-containing conjugated polymers by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 2001 , 15, 1239-1243	2.2	8
637	Near-Infrared-Excitable Organic Ultralong Phosphorescence through Multiphoton Absorption. <i>Research</i> , 2020 , 2020, 2904928	7.8	8
636	Structure-Enhanced Mechanically Robust Graphite Foam with Ultrahigh MnO Loading for Supercapacitors. <i>Research</i> , 2020 , 2020, 7304767	7.8	8
635	Near-Infrared-II Fluorescence Probes Based on Organic Small Molecules. <i>Acta Chimica Sinica</i> , 2020 , 78, 901	3.3	8
634	All-acceptor polymers with noncovalent interactions for efficient ambipolar transistors. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 2094-2101	7.1	8
633	Highly thermal-stable perylene-bisimide small molecules as efficient electron-transport materials for perovskite solar cells. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 14773-14781	7.1	8
632	Recent Development of Gas Sensing Platforms Based on 2D Atomic Crystals. <i>Research</i> , 2021 , 2021, 986	3 p .\$8	8
631	Di-defects synergy boost electrocatalysis hydrogen evolution over two-dimensional heterojunctions. <i>Nano Research</i> , 2022 , 15, 677	10	8
630	Artificial Receptor-Based Optical Sensors (AROS): Ultra-Sensitive Detection of Urea. <i>Advanced Photonics Research</i> , 2021 , 2, 2100044	1.9	8
629	Efficient phosphorescent polymer light-emitting devices using a conjugated starburst macromolecule as a cathode interlayer. <i>RSC Advances</i> , 2016 , 6, 10326-10333	3.7	8
628	Shape uniformity control of metalBrganic framework nanodisks via surfactant and substrate synergetic scissoring effects and their fluorescence sensing properties. <i>CrystEngComm</i> , 2016 , 18, 4830-	4835	8
627	Pentacene derivative/DTTCNQ cocrystals: alkyl-confined mixed heterojunctions with molecular alignment and transport property tuning. <i>Chemical Science</i> , 2019 , 10, 11125-11129	9.4	8
626	Control of Resistive Switching Voltage by Nanoparticle-Decorated Wrinkle Interface. <i>Advanced Electronic Materials</i> , 2019 , 5, 1800503	6.4	8

625	Deep-Blue Thiophene-Based Steric Oligomers as a Low-Threshold Laser Gain and Host Material. Advanced Optical Materials, 2020 , 8, 1902163	8.1	8
624	In-situ self-catalyzed growth of bimetallic nanoparticles/carbon nanotubes: A flexible binder-free electrocatalyst for high-performance oxygen evolution reaction. <i>Materials Today Physics</i> , 2021 , 16, 1003	3 <mark>8</mark> 3	8
623	Reconfigurable Optical Magnetometer for Static and Dynamic Fields. <i>Advanced Optical Materials</i> , 2021 , 9, 2001574	8.1	8
622	Efficient fabrication of MoS2 nanocomposites by water-assisted exfoliation for nonvolatile memories. <i>Green Chemistry</i> , 2021 , 23, 3642-3648	10	8
621	Controlling dynamic magnetic properties of coordination clusters via switchable electronic configuration. <i>Chemical Society Reviews</i> , 2021 , 50, 6832-6870	58.5	8
620	Thin-film transistors for emerging neuromorphic electronics: fundamentals, materials, and pattern recognition. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 11464-11483	7.1	8
619	Perovskite Solar Cells toward Eco-Friendly Printing. <i>Research</i> , 2021 , 2021, 9671892	7.8	8
618	Remarkable Suppression of Vibrational Relaxation in Organic Semiconducting Polymers by Introducing a Weak Electron Donor for Improved NIR-II Phototheranostics. <i>Advanced Functional Materials</i> , 2106575	15.6	8
617	Signal Filtering Enabled by Spike Voltage-Dependent Plasticity in Metalloporphyrin-Based Memristors. <i>Advanced Materials</i> , 2021 , 33, e2104370	24	8
616	Robust self-gated-carriers enabling highly sensitive wearable temperature sensors. <i>Applied Physics Reviews</i> , 2021 , 8, 031416	17.3	8
615	Intermolecular locking design of red thermally activated delayed fluorescence molecules for high-performance solution-processed organic light-emitting diodes. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 2291-2297	7.1	8
614	The Design and Bioimaging Applications of NIR Fluorescent Organic Dyes with High Brightness. <i>Advanced Optical Materials</i> ,2102514	8.1	8
613	Ultra-Thin Organic Solar Cells Incorporating Dielectric-Coated Comb Silver Nanogratings. <i>Plasmonics</i> , 2016 , 11, 151-157	2.4	7
612	Synthesis and luminescent properties of lanthanide-doped ScVO4 microcrystals. <i>Journal of Rare Earths</i> , 2017 , 35, 28-33	3.7	7
611	Multifunctional NaYF4:Yb3+,Er3+@SiO2@Au heterogeneous nanocomposites for upconversion luminescence, temperature sensing and photothermal conversion. <i>RSC Advances</i> , 2017 , 7, 11491-11495	3.7	7
610	Cathodic shift of a photo-potential on a Ta3N5 photoanode by post-heating a TiO2 passivation layer. <i>RSC Advances</i> , 2017 , 7, 30650-30656	3.7	7
609	Facile synthesis of ultrasmall hexagonal NaYF4:Yb3+,Er3+ upconversion nanocrystals through temperature oscillation. <i>Inorganic Chemistry Frontiers</i> , 2017 , 4, 1211-1214	6.8	7
608	Real-time naked-eye recognizable temperature monitoring based on Ho3+ (or Tm3+)-activated NaYF4 upconversion nanowires via visual multicolor alteration. <i>Materials Chemistry Frontiers</i> , 2019 , 3, 791-795	7.8	7

607	Rational Design of Efficient Organic Phototherapeutic Agents via Perturbation Theory for Enhancing Anticancer Therapeutics. <i>ChemMedChem</i> , 2019 , 14, 1378-1383	3.7	7
606	Supramolecular steric hindrance effect on morphologies and photophysical behaviors of spirocyclic aromatic hydrocarbon nanocrystals. <i>Nanoscale</i> , 2019 , 11, 5158-5162	7.7	7
605	Over 10% Efficient CuIn(S,Se)2 Solar Cells Fabricated From Environmentally Benign Solution in Air. <i>Solar Rrl</i> , 2019 , 3, 1900052	7.1	7
604	Arylfluorene based universal hosts for solution-processed RGB and white phosphorescent organic light-emitting devices. <i>RSC Advances</i> , 2015 , 5, 94077-94083	3.7	7
603	Synthesis and structural studies of a rare bis(phosphine) (hydrido) (silyl) platinum(II) complex containing a SiBi single bond. <i>Journal of Organometallic Chemistry</i> , 2015 , 776, 113-116	2.3	7
602	Three metal-organic framework isomers of different pore sizes for selective CO adsorption and isomerization studies. <i>Dalton Transactions</i> , 2020 , 49, 5618-5624	4.3	7
601	Non-fullerene small molecule acceptors with three-dimensional thiophene/selenophene-annulated perylene diimides for efficient organic solar cells. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 6749-6755	7.1	7
600	Hierarchical Uniform Crystalline Nanowires of Wide Bandgap Conjugated Polymer for Light-Emitting Optoelectronic Devices. <i>Cell Reports Physical Science</i> , 2020 , 1, 100029	6.1	7
599	Solution-Processable Csp-Annulated Hosts for High-Efficiency Deep Red Phosphorescent OLEDs. <i>ACS Applied Materials & Deep Red Phosphorescent OLEDs</i> . 12, 33960-33967	9.5	7
598	Coordination Reactions of 5-(2-(4-Bromophenyl)ethynyl)pyrimidine in On-Surface Synthesis. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 8954-8959	3.8	7
597	3D Nanoporous Gold with Very Low Parting Limit Derived from Au-Based Metallic Glass and Enhanced Methanol Electro-oxidation Catalytic Performance Induced by Metal Migration. <i>ChemNanoMat</i> , 2018 , 4, 88-97	3.5	7
596	Copper oxide-modified graphene anode and its application in organic photovoltaic cells. <i>Optics Express</i> , 2018 , 26, A769-A776	3.3	7
595	Efficient charge separation at multiple quantum well perovskite/PCBM interface. <i>Applied Physics Letters</i> , 2018 , 113, 041103	3.4	7
594	Bay-annulated indigo derivatives based on a core of spiro[fluorene-9,9?-xanthene]: Synthesis, photophysical, and electrochemical properties. <i>Dyes and Pigments</i> , 2019 , 160, 25-27	4.6	7
593	Simple fluorene oxadiazole-based Ir(iii) complexes with AIPE properties: synthesis, explosive detection and electroluminescence studies. <i>Dalton Transactions</i> , 2019 , 48, 13305-13314	4.3	7
592	Synthesis and characterization of amphiphilic graphene. <i>Science China Technological Sciences</i> , 2014 , 57, 244-248	3.5	7
591	Synthesis, structure and properties of a tetranuclear europium(III) complex based on 9,9-dimethylfluorene-2,7-diphosphonic acid. <i>Journal of Molecular Structure</i> , 2014 , 1067, 37-42	3.4	7
590	The study of defect state of 2,7-dipyrenyl-9-phenyl-9-pyrenyl fluorene through admittance spectroscopy. <i>Synthetic Metals</i> , 2014 , 198, 221-224	3.6	7

589	5-Carboxyfluorescein: intrinsic peroxidase-like catalytic activity and its application in the biomimetic synthesis of polyaniline nanoplatelets. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 5937-5941	7.3	7
588	Engineering of Energy Levels for Fully Conjugated D-A Block Copolymers via Tuning the Ratios of Donor P3HT and Acceptor PNDIT. <i>Chinese Journal of Chemistry</i> , 2015 , 33, 865-872	4.9	7
587	Inorganic anion-assisted supramolecular assemblies of bent dipyridines: effects of anionic geometries on hydrogen-bonding networks. <i>Inorganic Chemistry Frontiers</i> , 2015 , 2, 263-272	6.8	7
586	A highly efficient ultraviolet to near-infrared converter to improve efficiency of Si solar cells: Yb3+-doped BaGd2(MoO4)4. <i>Materials Letters</i> , 2014 , 117, 4-6	3.3	7
585	Vertical-external-cavity surface-emitting lasers and quantum dot lasers. <i>Frontiers of Optoelectronics</i> , 2012 , 5, 157-170	2.8	7
584	Supramolecular luminescence from oligofluorenol-based supramolecular polymer semiconductors. <i>International Journal of Molecular Sciences</i> , 2013 , 14, 22368-79	6.3	7
583	Transparent, Conductive, and Flexible Graphene Films from Large-Size Graphene Oxide. <i>Integrated Ferroelectrics</i> , 2011 , 128, 105-109	0.8	7
582	Vertical n-type organic transistors with tri(8-hydroxyquinoline) aluminum as collector and fullerene as emitter. <i>Applied Physics Letters</i> , 2011 , 98, 073309	3.4	7
581	Synthesis and Characterization of 1,8-Carbazole-based EConjugated Copolymer with Zigzagged Conformation for Stable Deep-blue Emission. <i>Chemistry Letters</i> , 2010 , 39, 522-523	1.7	7
580	Synthesis and electronic structure of 1,2-heteroarylethynes: Potential monomers for low bandgap conductive polymers. <i>Tetrahedron</i> , 1997 , 53, 13339-13350	2.4	7
579	Facile Synthesis of Novel Nonplanar Arylamine-centered Oligofluorenes Based on Complicated 9,9-Diarylfluorene Building Blocks by Friedel@rafts Reaction. <i>Chemistry Letters</i> , 2008 , 37, 622-623	1.7	7
578	Direct laser desorption/ionization time-of-flight mass spectrometry of conjugated polymers. Journal of Mass Spectrometry, 2007 , 42, 20-4	2.2	7
577	New oxadiazole derivatives as promising electron transport materials: synthesis and characterization of thermal, optical and electrochemical properties. <i>Open Chemistry</i> , 2007 , 5, 303-315	1.6	7
576	Photocrosslinkable hyperbranched polyfluorenes containing oxadiazole: synthesis, photophysics and electroluminescence. <i>Polymer International</i> , 2008 , 57, 1235-1241	3.3	7
575	Two novel oligomers based on fluorene and pyridine: Correlation between the structures and optoelectronic properties. <i>Journal of Polymer Science Part A</i> , 2008 , 46, 1548-1558	2.5	7
574	Novel Water-Soluble Shape-Regulatable Luminescent Nanoparticles by Non-Covalently Bonded Self-Assembly. <i>Macromolecular Rapid Communications</i> , 2006 , 27, 1317-1322	4.8	7
573	Highly efficient red electroluminescence induced by efficient electron injection and exciton confinement. <i>Synthetic Metals</i> , 2006 , 156, 763-768	3.6	7
572	Synthesis and characterization of novel fluorenethiophene-based conjugated copolymers. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 85, 232-235	3.1	7

571	Orbital Interactions in Ethynylpyridines. <i>Journal of Physical Chemistry A</i> , 1998 , 102, 904-908	2.8	7
570	Lithiophilic sites dependency of lithium deposition in Li metal host anodes. <i>Nano Energy</i> , 2022 , 94, 1068	3 8 37.1	7
569	The Strategies of Pathogen-Oriented Therapy on Circumventing Antimicrobial Resistance. <i>Research</i> , 2020 , 2020, 2016201	7.8	7
568	Solution-Processed Organic-Inorganic Hybrid Perovskites: A Class of Dream Materials Beyond Photovoltaic Applications. <i>Acta Chimica Sinica</i> , 2015 , 73, 171	3.3	7
567	Photoactivatable Nitric Oxide-Releasing Gold Nanocages for Enhanced Hyperthermia Treatment of Biofilm-Associated Infections. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 50668-50681	9.5	7
566	Simultaneous and Significant Improvements in Efficiency and Stability of Deep-Blue Organic Light Emitting Diodes through Friedel-Crafts Arylmethylation of a Fluorophore. <i>ChemPhotoChem</i> , 2020 , 4, 321-326	3.3	7
565	A novel naphthofluorescein-based probe for ultrasensitive point-of-care testing of zinc(II) ions and its bioimaging in living cells and zebrafishes. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2020 , 229, 117949	4.4	7
564	In Situ-Fabricated Perovskite Nanocrystals for Deep-Blue Light-Emitting Diodes. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 10348-10353	6.4	7
563	Ag(i)-Mediated hydrogen isotope exchange of mono-fluorinated (hetero)arenes. <i>Organic and Biomolecular Chemistry</i> , 2020 , 18, 6627-6633	3.9	7
562	Perovskite Light-Emitting Diodes with Near Unit Internal Quantum Efficiency at Low Temperatures. <i>Advanced Materials</i> , 2021 , 33, e2006302	24	7
561	Recent Advances in Multi-Layer Light-Emitting Heterostructure Transistors. <i>Small</i> , 2021 , 17, e2007661	11	7
560	Rational Design of All-Organic Nanoplatform for Highly Efficient MR/NIR-II Imaging-Guided Cancer Phototheranostics. <i>Small</i> , 2021 , 17, e2007566	11	7
559	Water-Soluble DonorAcceptorDonor-Based Fluorophore for High-Resolution NIR-II Fluorescence Imaging Applications. <i>ACS Applied Polymer Materials</i> , 2021 , 3, 3238-3246	4.3	7
558	Hydrogel-based composites: Unlimited platforms for biosensors and diagnostics. <i>View</i> ,20200165	7.8	7
557	Multimode Visualization of Electronic Skin from Bioinspired Colorimetric Sensor. <i>ACS Applied Materials & Acs Applied </i>	9.5	7
556	Efficient, high yield perovskite/fullerene planar-heterojunction solar cells via one-step spin-coating processing. <i>RSC Advances</i> , 2016 , 6, 48449-48454	3.7	7
555	First principles study on the structural, magnetic, electronic and optical properties of un-doped and La-doped BiFe 0.75 Mn 0.125 Ti 0.125 O 3. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2016 , 380, 3524-3529	2.3	7
554	Superhydrophobic graphene-decorated mesh gauze: recycling oils and organic solvents enhanced by large-diameter capillary action. <i>Science China Materials</i> , 2016 , 59, 581-588	7.1	7

553	Theoretical studies on 4H-cyclopenta[2,1-b:3,4-b?]dithiophene-based Windmill-shaped nanogrids with low reorganization energies. <i>Chemical Physics</i> , 2019 , 516, 191-198	2.3	7
552	Inverted organic light-emitting devices using a charge-generation unit as an electron injector. <i>Organic Electronics</i> , 2020 , 76, 105445	3.5	7
551	Highly Stable and Efficient Mesoporous and Hollow Silica Antireflection Coatings for Perovskite Solar Cells. <i>ACS Applied Energy Materials</i> , 2020 , 3, 4484-4491	6.1	7
550	Work Function-Tunable Graphene-Polymer Composite Electrodes for Organic Light-Emitting Diodes. <i>ACS Applied Energy Materials</i> , 2020 , 3, 4068-4077	6.1	7
549	A purely organic D-EA-ED emitter with thermally activated delayed fluorescence and room temperature phosphorescence for near-white OLED. <i>Chinese Chemical Letters</i> , 2021 , 32, 1367-1371	8.1	7
548	Highly flexible and degradable memory electronics comprised of all-biocompatible materials. <i>Nanoscale</i> , 2021 , 13, 724-729	7.7	7
547	Lifetime-tunable organic persistent room-temperature phosphorescent salts for large-area security printing. <i>Science China Materials</i> , 2021 , 64, 1485-1494	7.1	7
546	Guanidinium Chloride Passivated Perovskites for Efficient Solar Cells: The Role of Passivating Solvent. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 2866-2874	3.8	7
545	1,8-Substituted Pyrene Derivatives for High-Performance Organic Field-Effect Transistors. <i>Chemistry - an Asian Journal</i> , 2018 , 13, 3920-3927	4.5	7
544	Two Anthracene-Based Copolymers as the Hole-Transporting Materials for High-Performance Inverted (p-i-n) Perovskite Solar Cells. <i>Macromolecules</i> , 2018 , 51, 7407-7416	5.5	7
543	Feasible organic films using noninterfering emitters for sensitive and spatial high-temperature sensing. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 8115-8121	7.1	7
542	Adaptable Invisibility Management Using Kirigami-Inspired Transformable Metamaterials. <i>Research</i> , 2021 , 2021, 9806789	7.8	7
541	Centimeter-Sized Single Crystal of Two-Dimensional Halide Perovskites Incorporating Straight-Chain Symmetric Diammonium Ion for X-Ray Detection. <i>Angewandte Chemie</i> , 2020 , 132, 15006	5- 3 501∶	2 ⁷
540	Study of Karstedt's Catalyst for Hydrosilylation of a Wide Variety of Functionalized Alkenes with Triethoxysilane and Trimethoxysilane. <i>Chinese Journal of Chemistry</i> , 2017 , 35, 1227-1230	4.9	6
539	High-Level Pyrrolic/Pyridinic N-Doped Carbon Nanoflakes from Fused Polyimide for Anodic Lithium Storage. <i>ChemistrySelect</i> , 2017 , 2, 9007-9013	1.8	6
538	Intrinsic ambipolar transport for the traditional conducting or hole transport ionic blend polymer PEDOT:PSS. <i>Polymer</i> , 2019 , 180, 121732	3.9	6
537	Tuning Intramolecular Conformation and Packing Mode of Host Materials through Noncovalent Interactions for High-Efficiency Blue Electrophosphorescence. <i>ACS Omega</i> , 2019 , 4, 9129-9134	3.9	6
536	A convenient one-pot nanosynthesis of a C(sp)-C(sp)-linked 3D grid via an 'A + B' approach. <i>Organic and Biomolecular Chemistry</i> , 2019 , 17, 6574-6579	3.9	6

535	Colour-tunable ultralong organic phosphorescence upon temperature stimulus <i>RSC Advances</i> , 2019 , 9, 19075-19078	3.7	6	
534	A tricolour photodetecting memory device based on lead sulfide colloidal quantum dots floating gate. <i>Organic Electronics</i> , 2019 , 75, 105111	3.5	6	
533	Two-Photon-Induced Charge-Variable Conjugated Polyelectrolyte Brushes for Effective Gene Silencing ACS Applied Bio Materials, 2019 , 2, 1676-1685	4.1	6	•
532	Half-metal to magnetic semiconductor transition in Mn-doped monolayer Bi2O2Se tuned by strain. Journal of Magnetism and Magnetic Materials, 2019 , 480, 73-78	2.8	6	
531	Hyperbranched fluorene-alt-carbazole copolymers with spiro[3.3]heptane-2,6-dispirofluorene as the core and their application in white polymer light-emitting devices. <i>RSC Advances</i> , 2015 , 5, 49662-496	5 } 70	6	
530	Tetrahedral oxyanions-assisted supramolecular assemblies of pyridine-based tectons into hydrogen-bonding networks. <i>Journal of Molecular Structure</i> , 2015 , 1079, 266-273	3.4	6	
529	A photothermally-induced HClO-releasing nanoplatform for imaging-guided tumor ablation and bacterial prevention. <i>Biomaterials Science</i> , 2020 , 8, 7145-7153	7.4	6	
528	Supramolecular organic frameworks with ultralong phosphorescence via breaking Econjugated structures. <i>Giant</i> , 2020 , 1, 100007	5.6	6	
527	A novel fluorogenic probe for visualizing the hydrogen peroxide in Parkinson disease models. Journal of Innovative Optical Health Sciences, 2020 , 13, 2050013	1.2	6	
526	Enhanced stability and performance of light-emitting diodes based on in situ fabricated FAPbBr3 nanocrystals via ligand compensation with n-octylphosphonic acid. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 9936-9944	7.1	6	
525	Blue and green emission-transformed fluorescent copolymer: Specific detection of levodopa of anti-Parkinson drug in human serum. <i>Talanta</i> , 2020 , 214, 120817	6.2	6	
524	Wide band gap pyromellitic diimides for photo stable n-channel thin film transistors. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 7344-7349	7.1	6	
523	Imparting Boron Nanosheets with Ambient Stability through Methyl Group Functionalization for Mechanistic Investigation of Their Lithiation Process. <i>ACS Applied Materials & Discrete Materials & Disc</i>	9.5	6	
522	Cost-effective synthesis of carbazole/triphenylsilyl host materials with multiple Iltonjugation for blue phosphorescent organic light-emitting diodes. <i>Dyes and Pigments</i> , 2018 , 151, 187-193	4.6	6	
521	Synthesis, characterization and fluorescence imaging property of BODIPY-DPP-based dyad/triad. <i>Dyes and Pigments</i> , 2018 , 157, 396-404	4.6	6	
520	A Probe Based on a Soft Salt Complex for Ratiometric and Lifetime Imaging of Variations in Intracellular Oxygen Content. <i>European Journal of Inorganic Chemistry</i> , 2018 , 2018, 2345-2349	2.3	6	
519	Spiro-substitution effect of terfluorenes on amplified spontaneous emission and lasing behaviors. Journal of Materials Chemistry C, 2018 , 6, 4501-4507	7.1	6	
518	Effect of Drying Time on Morphology and Photovoltaic Characteristics of Polymer Solar Cells of Bis-PCBM/P3HT Composites. <i>ECS Journal of Solid State Science and Technology</i> , 2016 , 5, Q244-Q252	2	6	

517	Emission-Tunable Multicolor Graphene Molecules with Controllable Synthesis, Excellent Optical Properties, and Specific Applications. <i>ACS Applied Materials & Control </i>	9.5	6
516	Eaton's reagent assisted aromatic CII coupling of carbazoles for optoelectronic applications. <i>New Journal of Chemistry</i> , 2018 , 42, 14704-14708	3.6	6
515	Diketopyrrolopyrrole-based acceptors with multi-arms for organic solar cells <i>RSC Advances</i> , 2018 , 8, 25031-25039	3.7	6
514	Nearly Pure Red Color Upconversion Luminescence of Ln-Doped ScO with Unexpected RE-MOFs Molecular Alloys as Precursor. <i>Inorganic Chemistry</i> , 2018 , 57, 10511-10517	5.1	6
513	Heteroatom-Containing Organic Molecule for Two-Photon Fluorescence Lifetime Imaging and Photodynamic Therapy. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 20945-20951	3.8	6
512	Photocontrollable Fluorogenic Probe for Visualizing Near-Membrane Hypochlorite in Live Cells. <i>ChemistrySelect</i> , 2018 , 3, 5981-5986	1.8	6
511	Two-Dimensional Conjugated Microporous Polymer with Structural Stability and Electrical Bistability for Rectifying Memory Array. <i>Advanced Intelligent Systems</i> , 2019 , 1, 1900052	6	6
510	Alkyl-chain branched effect on the aggregation and photophysical behavior of polydiarylfluorenes toward stable deep-blue electroluminescence and efficient amplified spontaneous emission. <i>Chinese Chemical Letters</i> , 2019 , 30, 1959-1964	8.1	6
509	Modulation of singlet and triplet excited states through \$\mathbb{B}\$ pacers in ternary 1,3,5-triazines. RSC Advances, 2013 , 3, 13782	3.7	6
508	Color-saturated and angle-stable blue top-emitting organic light-emitting diodes based on semitransparent bilayer cathode: Theory and experiment. <i>Organic Electronics</i> , 2013 , 14, 423-429	3.5	6
507	Bulky side chain effect of poly(N-vinylcarbazole)-based stacked polymer electrets on device performance parameters of transistor memories. <i>Journal of Polymer Science Part A</i> , 2017 , 55, 3554-3564	4 ^{2.5}	6
506	Improved performance of inkjet-printed Ag source/drain electrodes for organic thin-film transistors by overcoming the coffee ring effects. <i>AIP Advances</i> , 2017 , 7, 115008	1.5	6
505	Synthesis, Structural Characterization and Reactivity of a Bis(phosphine)(silyl) Platinum(II) Complex. <i>Chinese Journal of Chemistry</i> , 2015 , 33, 1206-1210	4.9	6
504	An Au nanocomposite based biosensor for determination of cholesterol. <i>Analytical Methods</i> , 2015 , 7, 3480-3485	3.2	6
503	Tuning peripheral group density in ternary phosphine oxide hosts for low-voltage-driven yellow PhOLEDs. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 6709-6716	7.1	6
502	Donor-acceptor star-shaped conjugated macroelectrolytes: synthesis, light-harvesting properties, and self-assembly-induced FEster resonance energy transfer. <i>Journal of Physical Chemistry B</i> , 2015 , 119, 6730-9	3.4	6
501	Charge trapping behavior visualization of dumbbell-shaped DSFXPY via electrical force microscopy. Journal of Materials Chemistry C, 2015 , 3, 12436-12442	7.1	6
500	High performance flexible top-emitting warm-white organic light-emitting devices and chromaticity shift mechanism. <i>AIP Advances</i> , 2014 , 4, 047110	1.5	6

499	Characteristics of blue organic light emitting diodes with different thick emitting layers. <i>Optical Materials</i> , 2014 , 36, 1720-1723	3.3	6
498	Characterization of Hindered Amine Light Stabilizers in Polymer Matrix Using Terahertz Time-Domain Spectroscopy. <i>Macromolecular Chemistry and Physics</i> , 2012 , 213, 1441-1447	2.6	6
497	Water-soluble fluorescent nanoparticles without distinct aggregation of conjugated polymer chains. <i>Polymer International</i> , 2011 , 60, 45-50	3.3	6
496	Synthesis and characterization of one star-shaped polymer with charged iridium complex as luminescent core. <i>Journal of Luminescence</i> , 2011 , 131, 2166-2173	3.8	6
495	Fine-tuning the thicknesses of organic layers to realize high-efficiency and long-lifetime blue organic light-emitting diodes. <i>Chinese Physics B</i> , 2012 , 21, 083303	1.2	6
494	Improvement of viewing angle and pixel contrast ratio in green top-emitting organic light-emitting devices. <i>Optics Express</i> , 2008 , 16, 8868-75	3.3	6
493	Synthesis and characterization of a bipyridine-containing electroluminescent polymer with well-defined conjugation length. <i>Thin Solid Films</i> , 2002 , 417, 151-154	2.2	6
492	High efficiency polymer electrophosphorescent light-emitting diodes. <i>Semiconductor Science and Technology</i> , 2005 , 20, 805-808	1.8	6
491	Photothermally Responsive Conjugated Polymeric Singlet Oxygen Carrier for Phase Change-Controlled and Sustainable Phototherapy for Hypoxic Tumor. <i>Research</i> , 2020 , 2020, 5351848	7.8	6
490	Structural Manipulation and Triboluminescence of Tetrahalomanganese(II) Complexes. <i>Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica</i> , 2020 , 36, 1907078-0	3.8	6
489	Progress in the Fabrication of Cu2ZnSnS4Thin Film for Solar Cells. <i>Acta Chimica Sinica</i> , 2014 , 72, 643	3.3	6
488	Conjugated Regulation of Phosphorescent Iridium (III) Complex Constructed from Spiro Ligand and Its Electroluminescent Performances. <i>Acta Chimica Sinica</i> , 2020 , 78, 56	3.3	6
487	Matrix Encapsulation of Solution-Processed Thiophene-Based Fluorophores for Enhanced Red and Green Amplified Spontaneous Emission. <i>Physica Status Solidi - Rapid Research Letters</i> , 2020 , 14, 1900493	3 ^{2.5}	6
486	Nanogridarene: A Rising Nanomolecular Integration Platform of Organic Intelligence. <i>Chinese Journal of Chemistry</i> , 2020 , 38, 103-105	4.9	6
485	Stability and Phase Transition of Metastable Black Arsenic under High Pressure. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 93-98	6.4	6
484	Aqueous synthesis of PEGylated AgS quantum dots and their in vivo tumor targeting behavior. <i>Biochemical and Biophysical Research Communications</i> , 2020 , 529, 930-935	3.4	6
483	Resonance hosts for high efficiency solution-processed blue and white electrophosphorescent devices. <i>Science China Chemistry</i> , 2020 , 63, 1645-1651	7.9	6
482	High-performance sodium-ion anodes enabled by a low-temperature molten salt approach. <i>Chemical Communications</i> , 2020 , 56, 11422-11425	5.8	6

481	Vanadium Oxide-Modified Triphenylamine-Based Hole-Transport Layer for Highly Reproducible and Efficient Inverted Perovskite Solar Cells. <i>Advanced Photonics Research</i> , 2021 , 2, 2000132	1.9	6
480	Electron-rich isolated Pt active sites in ultrafine PtFe3 intermetallic catalyst for efficient alkene hydrosilylation. <i>Journal of Catalysis</i> , 2021 , 396, 351-359	7.3	6
479	All-in-One Hollow Flower-Like Covalent Organic Frameworks for Flexible Transparent Devices. <i>Advanced Functional Materials</i> , 2021 , 31, 2010306	15.6	6
478	Diarylfluorene Flexible Pendant Functionalization of Polystyrene for Efficient and Stable Deep-Blue Polymer Light-Emitting Diodes. <i>Macromolecules</i> , 2021 , 54, 6525-6533	5.5	6
477	A transparent paper-based platform for multiplexed bioassays by wavelength-dependent absorbance/transmittance. <i>Analyst, The</i> , 2019 , 144, 7157-7161	5	6
476	Subtle structure tailoring of metal-free triazine luminogens for highly efficient ultralong organic phosphorescence. <i>Chinese Chemical Letters</i> , 2019 , 30, 1935-1938	8.1	6
475	Fast-Response Fluorogenic Probe for Visualizing Hypochlorite in Living Cells and in Zebrafish. <i>ChemBioChem</i> , 2019 , 20, 831-837	3.8	6
474	Enhanced emission in organic nanocrystals via asymmetrical design of spirocyclic aromatic hydrocarbons. <i>Nanoscale</i> , 2020 , 12, 9964-9968	7.7	6
473	Recent Advances in Substituent Effects of Blue Thermally Activated Delayed Fluorescence Small Molecules. <i>Acta Chimica Sinica</i> , 2021 , 79, 557	3.3	6
472	Organic Synthesis of Ancient Windmill-Like Window Nanogrid at Molecular Scale. <i>European Journal of Organic Chemistry</i> , 2018 , 2018, 7009-7016	3.2	6
471	Confinement fluorescence effect (CFE): Lighting up life by enhancing the absorbed photon energy utilization efficiency of fluorophores. <i>Coordination Chemistry Reviews</i> , 2021 , 440, 213979	23.2	6
470	Frontiers and Structural Engineering for Building Flexible Zinc-Air Batteries <i>Advanced Science</i> , 2021 , e2103954	13.6	6
469	Metamaterial Absorbers: from Tunable Surface to Structural Transformation. Advanced Materials, 22025	i 0 9 ₁	6
468	Multilayered phosphorescent polymer light-emitting diodes using a solution-processed n-doped electron transport layer. <i>Journal of Luminescence</i> , 2017 , 186, 87-92	3.8	5
467	Mini-Sized Carbon Nitride Nanosheets with Double Excitation- and pH-Dependent Fluorescence Behaviors for Two-Photon Cell Imaging. <i>Chemistry - an Asian Journal</i> , 2017 , 12, 835-840	4.5	5
466	Multiferroic- and bandgap-tuning in BiFeO3 nanoparticles via Zn and Y co-doping. <i>Journal of Materials Science: Materials in Electronics</i> , 2017 , 28, 11338-11345	2.1	5
465	Furan-based diketopyrrolopyrrole chromophores: Tuning the spectroscopic, electrochemical and aggregation-induced fluorescent properties with various intramolecular donor-acceptor spacers. Journal of Molecular Structure, 2017, 1143, 168-175	3.4	5
464	Understanding the dependence of performance on the dielectric-semiconductor interface in pentacene-based organic field-effect transistors. <i>Materials Letters</i> , 2017 , 189, 286-289	3.3	5

463	Unexpected One-Pot Synthesis of Diindolotriazatruxene: A Planar Electron-Rich Scaffold Toward Highly Extended PAHs. <i>Asian Journal of Organic Chemistry</i> , 2017 , 6, 1749-1754	3	5	
462	Low-Threshold Non-Doped Deep Blue Lasing from Monodisperse Truxene-Cored Conjugated Starbursts with High Photostability. <i>Chemistry - an Asian Journal</i> , 2019 , 14, 3442-3448	4.5	5	
461	Toward a New Energy Era: Self-Driven Integrated Systems Based on Perovskite Solar Cells. <i>Solar Rrl</i> , 2019 , 3, 1900320	7.1	5	
460	Stirring revealed new functions of ethylenediamine and hydrazine in the morphology control of copper nanowires. <i>Nanoscale</i> , 2019 , 11, 11902-11909	7.7	5	
459	Tetracyano-substituted spiro[fluorene-9,9?-xanthene] as electron acceptor for exciplex thermally activated delayed fluorescence. <i>Journal of Molecular Structure</i> , 2019 , 1196, 132-138	3.4	5	
458	Facile one-pot synthesis of monodispersed NIR-II emissive silver sulfide quantum dots. <i>Inorganic Chemistry Communication</i> , 2019 , 106, 233-239	3.1	5	
457	Photophysical Identification of Three Kinds of Low-Energy Green Band Defects in Wide-Bandgap Polyfluorenes. <i>Journal of Physical Chemistry A</i> , 2019 , 123, 2789-2795	2.8	5	
456	Solution-Processable 2D Polymer/Graphene Oxide Heterostructure for Intrinsic Low-Current Memory Device. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 51729-51735	9.5	5	
455	Tailoring Component Interaction for Air-Processed Efficient and Stable All-Inorganic Perovskite Photovoltaic. <i>Angewandte Chemie</i> , 2020 , 132, 13456-13463	3.6	5	
454	A dual functional 1D Cd-based coordination polymer for the highly luminescent sensitive detection of Fe3+ and picric acid. <i>Applied Organometallic Chemistry</i> , 2020 , 34, e5692	3.1	5	
453	Diastereoisomer-Induced Morphology Tunable Self-Assembled Organic Microcrystals of Conjugated Molecules for Ultraviolet Laser. <i>Advanced Materials Interfaces</i> , 2020 , 7, 1902057	4.6	5	
452	Steric Poly(diarylfluorene-co-benzothiadiazole) for Efficient Amplified Spontaneous Emission and Polymer Light-Emitting Diodes: Benefit from Preventing Interchain Aggregation and Polaron Formation. <i>Advanced Optical Materials</i> , 2020 , 8, 1901616	8.1	5	
451	Synergistic steric pairing effects of terfluorenes with ternary side groups on ⊯onformation transition: experiments and computations. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 1551-1561	7.1	5	
450	An effective signal amplifying strategy for copper (II) sensing by using in situ fluorescent proteins as energy donor of FRET. <i>Sensors and Actuators B: Chemical</i> , 2018 , 259, 633-641	8.5	5	
449	Tuning the backbones and side chains of cationic meta-linked poly(phenylene ethynylene)s: Different conformational modes, tunable light emission, and helical wrapping of multi-walled carbon nanotubes. <i>Polymer</i> , 2016 , 102, 143-152	3.9	5	
448	Application of NaYF4:Er3+ (2%), Yb3+ (18%) Up-Conversion Nanoparticles in Polymer Solar Cells and its Working Mechanism. <i>Journal of Nanoscience and Nanotechnology</i> , 2016 , 16, 7380-7387	1.3	5	
447	Nanostructured Si@C/NiCo2O4 heterostructures for a high performance supercapacitor. <i>RSC Advances</i> , 2016 , 6, 15137-15142	3.7	5	
446	Organic nanosynthesis of diarylfluorene-based ladder-type gridarene isomers via intramolecular A1-B1 type Friedel-Crafts gridization. <i>Tetrahedron</i> , 2018 , 74, 5833-5838	2.4	5	

445	Multiplexed Biomolecular Arrays Generated via Parallel Dip-Pen Nanolithography. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 25121-25126	9.5	5
444	Enhancing Optical Gain Stability for a Deep-Blue Emitter Enabled by a Low-Loss Transparent Matrix. Journal of Physical Chemistry C, 2018 , 122, 21569-21578	3.8	5
443	Superelectrophilic-Initiated C-H Functionalization at the Position of Thiophenes: A One-Pot Synthesis of -Stereospecific Saddle-Shaped Cyclic Compounds. <i>Journal of Organic Chemistry</i> , 2019 , 84, 10701-10709	4.2	5
442	Using magnetic levitation for density-based detection of cooking oils RSC Advances, 2019, 9, 18285-18	32 9.1	5
441	Highly Emissive Hierarchical Uniform Dialkylfluorene-Based Dimer Microcrystals for Ultraviolet Organic Laser. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 28881-28886	3.8	5
440	Green-synthesized, low-cost tetracyanodiazafluorene (TCAF) as electron injection material for organic light-emitting diodes. <i>Chinese Chemical Letters</i> , 2019 , 30, 1969-1973	8.1	5
439	Two photoluminescent polymers based on fluorene and 2,4,6-triphenyl pyridine: Synthesis and electroluminescence. <i>Journal of Applied Polymer Science</i> , 2012 , 124, 3921-3929	2.9	5
438	Star-shaped conjugated oligoelectrolyte for bioimaging in living cells. <i>Science Bulletin</i> , 2013 , 58, 2570-2	:575	5
437	A Spiro [Fluorene-9, 9EXanthene]-Based Host Material for Efficient Green and Blue Phosphorescent OLED. <i>Applied Mechanics and Materials</i> , 2013 , 331, 503-507	0.3	5
436	Hydrogenated vanadium oxides as an advanced anode material in lithium ion batteries. <i>Nano Research</i> , 2017 , 10, 4266-4273	10	5
435	Compact broadband spectrometer based on upconversion and downconversion luminescence. <i>Optics Letters</i> , 2017 , 42, 4375-4378	3	5
434	Label-Free DNA Sensors Based on Field-Effect Transistors with Semiconductor of Carbon Materials. <i>Chinese Journal of Chemistry</i> , 2015 , 33, 828-841	4.9	5
433	Influences of wide-angle and multi-beam interference on the chromaticity and efficiency of top-emitting white organic light-emitting diodes. <i>Journal of Applied Physics</i> , 2015 , 117, 083113	2.5	5
432	Monodispersed nanoparticles of conjugated polyelectrolyte brush with high charge density for rapid, specific and label-free detection of tumor marker. <i>Analyst, The</i> , 2015 , 140, 1842-6	5	5
431	Non-doped white organic light-emitting diodes based on ultra-thin emitting layer with aggregation-induced emission. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2012 , 209, 373-377	1.6	5
430	Unipolar Resistive Switching Effects Based on Al/ZnO/P ++ -Si Diodes for Nonvolatile Memory Applications. <i>Chinese Physics Letters</i> , 2012 , 29, 087201	1.8	5
429	Water-soluble light-emitting nanoparticles prepared by non-covalent bond self-assembly of a hydroxyl group functionalized oligo(p-phenyleneethynylene) with different water-soluble polymers. <i>Science China Chemistry</i> , 2010 , 53, 1122-1127	7.9	5
428	Energy band and band-gap properties of deformed single-walled silicon nanotubes. <i>Frontiers of Physics in China</i> , 2010 , 5, 183-187		5

427	Photoelectron Spectroscopy Study of Orbital Interactions. Ethynylfurans. <i>Journal of Physical Chemistry A</i> , 1997 , 101, 3501-3504	2.8	5
426	Synthesis and characterization of a novel conjugated polymer containing PPV oligomer and fluorene. <i>Thin Solid Films</i> , 2002 , 417, 215-220	2.2	5
425	Synthesis and characterization of a novel light-emitting copolymer with improved charge-balancing property. <i>Thin Solid Films</i> , 2000 , 363, 102-105	2.2	5
424	Photoelectron spectroscopy of lactams. Journal of Physical Organic Chemistry, 1999, 12, 388-391	2.1	5
423	Interconversion and decomposition of furanones. <i>Journal of the Chemical Society Perkin Transactions II</i> , 1999 , 725-730		5
422	Poly[2-(4?-decyloxylphenyl)-1,4-phenylenevinylene]: A Novel Soluble Phenyl-Substituted Poly(p-phenylenevinylene) Derivative as Electroluminescent Material. <i>Chemistry Letters</i> , 1999 , 28, 1123-	1 7 24	5
421	Green-Blue Photoluminescence from a Novel Silicon-Containing Alternating Copolymer. <i>Chemistry Letters</i> , 1999 , 28, 477-478	1.7	5
420	Cobalt single-atom-decorated nickel thiophosphate nanosheets for overall water splitting. <i>Journal of Materials Chemistry A</i> , 2021 , 10, 296-303	13	5
419	Nanolaser with a Single-Graphene-Nanoribbon in a Microcavity. <i>Journal of Nanoelectronics and Optoelectronics</i> , 2011 , 6, 138-143	1.3	5
418	Emission Editing in Eu/Tb binary complexes based on Au@SiO nanorods. <i>Optics Express</i> , 2019 , 27, 27726	<i>-3</i> 2.773	65
417	Smart band-aid: Multifunctional and wearable electronic device for self-powered motion monitoring and human-machine interaction. <i>Nano Energy</i> , 2022 , 92, 106840	17.1	5
416	Synthesis of D-EA-ED Type Dopant-Free Hole Transporting Materials and Application in Inverted Perovskite Solar Cells. <i>Acta Chimica Sinica</i> , 2019 , 77, 741	3.3	5
415	Hydrogel-based flexible materials for diabetes diagnosis, treatment, and management. <i>Npj Flexible Electronics</i> , 2021 , 5,	10.7	5
414	The progress of flexible organic field-effect transistors. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 0473	Qd .6	5
413	Intrinsic mechanical properties of the polymeric semiconductors. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 11631-11637	7.1	5
412	Highly Efficient Ultrathin Fluorescent OLEDs through Synergistic Sensitization Effects of Phosphor and Exciplex. <i>ACS Applied Electronic Materials</i> , 2020 , 2, 3704-3710	4	5
411	The Jahn-Teller Effect for Amorphization of Molybdenum Trioxide towards High-Performance Fiber Supercapacitor. <i>Research</i> , 2021 , 2021, 6742715	7.8	5

409	Long-Range Ordered Hierarchical Structure Assisted by the Side-Oligoether Network in Light-Emitting Conjugated Polymer for an Efficient Deep-Blue Organic Laser. <i>Chemistry of Materials</i> , 2021 , 33, 5326-5336	9.6	5
408	Controllable photoactivated organic persistent room-temperature phosphorescence for information encryption and visual temperature detection. <i>Cell Reports Physical Science</i> , 2021 , 2, 100505	6.1	5
407	Bilayer nanocarbon heterojunction for full-solution processed flexible all-carbon visible photodetector. <i>APL Materials</i> , 2019 , 7, 031501	5.7	5
406	Evoking non-bonding S-linteraction by aryl phosphine sulfide for selectively enhanced electronic property of organic semiconductors. <i>Chemical Engineering Journal</i> , 2020 , 380, 122562	14.7	5
405	Asymmetric small organic molecule-based NIR-II fluorophores for high performance tumor phototheranostics. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 5689-5697	7.8	5
404	Immune remodeling triggered by photothermal therapy with semiconducting polymer nanoparticles in combination with chemotherapy to inhibit metastatic cancers. <i>Journal of Materials Chemistry B</i> , 2021 , 9, 2613-2622	7.3	5
403	Time-resolved analysis of photoluminescence at a single wavelength for ratiometric and multiplex biosensing and bioimaging. <i>Chemical Science</i> , 2021 , 12, 11020-11027	9.4	5
402	A Dynamic Heterometal-Organic Rhomboid Exhibiting Thermochromic and Piezochromic Luminescence. <i>Inorganic Chemistry</i> , 2018 , 57, 14489-14492	5.1	5
401	Conjugated Polymer Brush Based on Poly(l-lysine) with Efficient Ovalbumin Delivery for Dendritic Cell Vaccine <i>ACS Applied Bio Materials</i> , 2018 , 1, 1972-1982	4.1	5
400	Diarylfluorene-Based Organic Semiconductor Materials toward Optoelectronic Applications. <i>Advanced Functional Materials</i> , 2021 , 31, 2105092	15.6	5
399	Diketopyrrolopyrrole derivatives-based NIR-II fluorophores for theranostics. <i>Dyes and Pigments</i> , 2021 , 193, 109480	4.6	5
398	Covalently binding ultrafine MoS2 particles to N, S co-doped carbon renders excellent Na storage performances. <i>Carbon</i> , 2021 , 184, 177-185	10.4	5
397	Side chain engineering of semiconducting polymers for improved NIR-II fluorescence imaging and photothermal therapy. <i>Chemical Engineering Journal</i> , 2022 , 428, 132098	14.7	5
396	A 9-fluorenyl substitution strategy for aromatic-imide-based TADF emitters towards efficient and stable sky blue OLEDs with nearly 30% external quantum efficiency. <i>Materials Advances</i> , 2021 , 2, 4000-4	4 <i>0</i> 08	5
395	Efficient small molecule organic light-emitting diodes fabricated by brush-coating. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 2190-2197	7.1	5
394	Rational design of high performance nanotheranostics for NIR-II fluorescence/magnetic resonance imaging guided enhanced phototherapy. <i>Biomaterials Science</i> , 2021 , 9, 3499-3506	7.4	5
393	Nitrogen and Oxygen Co-Doped Porous Hard Carbon Nanospheres with Core-Shell Architecture as Anode Materials for Superior Potassium-Ion Storage. <i>Small</i> , 2021 , e2104296	11	5
392	Influence of IHyperconjugation Effect on Thermal, Morphological, and Photoelectronic Properties of Non-Conjugated Pyrene Derivatives. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 9230-924	1 ^{3.8}	4

391	Synthesis, Structural Studies and Reactivity of Two cis-Bis(phosphine)bis(silyl) Palladium(II) Complexes. <i>Chinese Journal of Chemistry</i> , 2017 , 35, 507-511	4.9	4	
390	Electron-Rich Extended Diindolotriazatruxene-Based Chemosensors with Highly Selective and Rapid Responses to Nitroaromatic Explosives. <i>ChemPlusChem</i> , 2019 , 84, 1623-1629	2.8	4	
389	Influence of the molecular weight in P3HT block on fully conjugated block copolymers. <i>Synthetic Metals</i> , 2019 , 253, 20-25	3.6	4	
388	Facile synthesis of hollow mesoporous silica nanoparticles with in-situ formed CuS templates. <i>Materials Letters</i> , 2019 , 250, 25-29	3.3	4	
387	Sequential Ligand Exchange of Coordination Polymers Hybridized with In Situ Grown and Aligned Au Nanowires for Rapid and Selective Gas Sensing. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2019 , 11, 13	624-13	3631	
386	Photoswitchable probe with distinctive characteristics for selective fluorescence imaging and long-term tracing <i>RSC Advances</i> , 2019 , 9, 4812-4815	3.7	4	
385	A macrocyclic oligoelectrolyte as a facial platform for absorbing hyaluronic acid oligomers for targeted cancer cellular imaging. <i>Polymer Chemistry</i> , 2015 , 6, 5295-5304	4.9	4	
384	Si/NiCo2O4 heterostructures electrodes with enhanced performance for supercapacitor. <i>RSC Advances</i> , 2015 , 5, 62813-62818	3.7	4	
383	Synthesis, structural characterization and reactivity of a bis(phosphine)(silyl) platinum(II) complex. <i>Journal of Molecular Structure</i> , 2015 , 1097, 181-184	3.4	4	
382	Trap-Filling of ZnO Buffer Layer for Improved Efficiencies of Organic Solar Cells. <i>Frontiers in Chemistry</i> , 2020 , 8, 399	5	4	
381	Chemiluminescent organic nanophotosensitizer for a penetration depth independent photodynamic therapy <i>RSC Advances</i> , 2020 , 10, 11861-11864	3.7	4	
3 80	Supramolecular Steric Hindrance at Bulky Organic/Polymer Semiconductors and Devices 2016 , 443-455		4	
379	Efficient Synthesis of All-Aryl Phenazasilines for Optoelectronic Applications. <i>Australian Journal of Chemistry</i> , 2016 , 69, 419	1.2	4	
378	Multiple © Conjugated Molecules with Selectively Enhanced Electrical Performance for Efficient Solution-Processed Blue Electrophosphorescence. <i>Advanced Optical Materials</i> , 2019 , 7, 1901124	8.1	4	
377	Theoretical investigation of substitution and end-group effects on poly(p-phenylene vinylene)s. <i>Science China Chemistry</i> , 2014 , 57, 435-441	7.9	4	
376	In situ synthesis of NixCoyOz (composites with rod-like Ni@C as support for potential application in supercapacitors. <i>RSC Advances</i> , 2014 , 4, 32047	3.7	4	
375	Theoretical study of fluorescence resonant energy transfer dynamics in individual semiconductor nanocrystal DNA dye conjugates. <i>Journal of Luminescence</i> , 2012 , 132, 1472-1476	3.8	4	
374	Influence of transition metal element (Co, Ni, Cu) doping on structural, electrical and magnetic properties of Bi0.9Ca0.1FeO3 nanoparticles. <i>Journal of Materials Science: Materials in Electronics</i> , 2017, 28, 3278-3284	2.1	4	

373	Multiple-Stimuli Responsive Luminescent Gels Based on Cholesterol Containing Benzothiadiazole Fluorophores. <i>Chinese Journal of Chemistry</i> , 2015 , 33, 1140-1144	4.9	4
372	A Water-soluble Conjugated Polymer for Thiol Detection Based on "Turn-off" Effect. <i>Chinese Journal of Chemistry</i> , 2015 , 33, 881-887	4.9	4
371	Water-soluble hyperbranched poly(phenyleneethynylene)s: Facile synthesis, characterization, and interactions with dsDNA. <i>Polymer</i> , 2015 , 59, 93-101	3.9	4
370	Solution-processed high-performance orange phosphorescent and white PLEDs with a high color-rendering index from an unprecedented Estacked and Econjugated host material. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2014 , 52, 587-595	2.6	4
369	Four emission bands from a mixed-ligand iridium complex IrQ(ppy)2 at room temperature. <i>Optical Materials</i> , 2014 , 36, 1734-1738	3.3	4
368	A very high-contrast top-emitting organic light-emitting diode with a Ni/ZnS/MgF2/Ni contrast-enhancing stack and a CuPc/C60 anti-reflection bilayer. <i>Organic Electronics</i> , 2012 , 13, 3263-326	3 .5	4
367	Facile synthesis and optoelectronic properties of N,N-difluorenevinylaniline-based molecules. <i>New Journal of Chemistry</i> , 2012 , 36, 1512	3.6	4
366	Enhancing nonvolatile write-once-read-many-times memory effects with SiO2nanoparticles sandwiched by poly(N-vinylcarbazole) layers. <i>Journal Physics D: Applied Physics</i> , 2012 , 45, 215101	3	4
365	Flexible white top-emitting organic light-emitting diode with a MoO x roughness improvement layer. <i>Chinese Physics B</i> , 2013 , 22, 128506	1.2	4
364	Synthesis and Crystal Structure of Charge-Transfer Salt (TTF)[Pt(mnt)2]. <i>Journal of Chemical Crystallography</i> , 2011 , 41, 430-433	0.5	4
363	Influence of asymmetric adsorption on electronic states of molecule studied by scanning tunneling microscopy and spectroscopy. <i>Chemical Physics Letters</i> , 2009 , 474, 132-136	2.5	4
362	A rectifying diode with hysteresis effect from an electroactive hybrid of carbazole-functionalized polystyrene with CdTe nanocrystals via electrostatic interaction. <i>Science China Chemistry</i> , 2010 , 53, 2324	⁷ 2328	4
361	Molecular Packing in Self-Assembled p-n and n-p-n Heterostructure Co-oligomers. <i>Chinese Journal of Chemistry</i> , 2010 , 28, 1821-1828	4.9	4
360	Preparation of CdS nanoparticles at the monolayer of N-methyl-p-(p-tetradecyloxystyryl)pyridinium iodine. <i>Materials Letters</i> , 1997 , 33, 221-223	3.3	4
359	Femtosecond studies of the third-order optical non-linearity of nanometre-sized cadmium oxide organosols by the z-scan technique. <i>Journal of Materials Science Letters</i> , 1997 , 16, 617-618		4
358	An ab initio study on the thermal decomposition of I-thiobutyrolactone. <i>Chemical Physics Letters</i> , 1997 , 265, 508-513	2.5	4
357	Nanostructured ultra-low-liporous fluoropolymer composite films via plasma co-polymerization of hydrophobic and hydrophilic monomers and subsequent hydrolysis treatment. <i>European Polymer Journal</i> , 2007 , 43, 3773-3779	5.2	4
356	A novel fluorene-containing oligomer with relative high photoluminescence quantum efficiency. Journal of Fluorine Chemistry, 2006 , 127, 973-976	2.1	4

355	Graft and characterization of 9-vinylcarbazole conjugated molecule on hydrogen-terminated silicon surface. <i>Applied Surface Science</i> , 2006 , 253, 1534-1539	6.7	4	
354	Novel Water-soluble Light-emitting Materials Prepared by Noncovalently Bonded Self-assembly. <i>Chemistry Letters</i> , 2005 , 34, 1164-1165	1.7	4	
353	Effect of electric fields on photoluminescence of 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran. <i>Applied Physics A: Materials Science and Processing</i> , 2005 , 80, 1753-	1 7 56	4	
352	Modification of Si(100) surface by plasma-enhanced graft polymerization of allylpentafluorobenzene. <i>Journal of Adhesion Science and Technology</i> , 2001 , 15, 1655-1672	2	4	
351	Tuning redox behavior and emissive wavelength of conjugated polymers by pli diblock structures la theoretical investigation. <i>Synthetic Metals</i> , 2000 , 110, 85-89	3.6	4	
350	Synthesis and magnetic properties of the Ho(BA)2AA complex monomer and its copolymer with MMA. <i>Synthetic Metals</i> , 2001 , 118, 39-43	3.6	4	
349	Preparation and enhanced photocatalytic oxidation activity of surface-modified CdS nanoparticles with high photostability. <i>Journal of Materials Research</i> , 1999 , 14, 2092-2095	2.5	4	
348	Ab initio study on thermal decomposition of I-butyrolactone. <i>Chemical Physics Letters</i> , 1999 , 305, 474-4	8 2 .5	4	
347	Conformational analysis of trimethylsilyl-substituted trans-stilbenes: modeling of torsions in silicon-containing poly(para-phenylenevinylene). <i>Chemical Physics Letters</i> , 1999 , 315, 233-238	2.5	4	
346	An Overview of Organs-on-Chips Based on Deep Learning <i>Research</i> , 2022 , 2022, 9869518	7.8	4	
345	?????(SFX)??????OLEDs. Chinese Science Bulletin, 2015 , 60, 1237-1250	2.9	4	
344	3D Steric Bulky Semiconductor Molecules toward Organic Optoelectronic Nanocrystals1799-1818		4	
343	Organic Photovoltaics Printed via Sheet Electrospray Enabled by Quadrupole Electrodes. <i>ACS Applied Materials & District Applied & District Applied Materials & District Applied & Di</i>	9.5	4	
342	Highly Regioselective Direct C-H Arylation: Facile Construction of Symmetrical Dithienophthalimide-Based -Conjugated Molecules for Optoelectronics. <i>Research</i> , 2020 , 2020, 9075697	. 7.8	4	
341	Programmable patterned MoS film by direct laser writing for health-related signals monitoring. <i>IScience</i> , 2021 , 24, 103313	6.1	4	
340	Slow Energy Transfer in Self-Doped Conformation Film of Steric Polydiarylfluorenes toward Stable Dual Deep-Blue Amplified Spontaneous Emission. <i>Advanced Optical Materials</i> ,2100723	8.1	4	
339	Lead Sources in Perovskite Solar Cells: Toward Controllable, Sustainable, and Large-Scalable Production. <i>Solar Rrl</i> , 2021 , 5, 2100665	7.1	4	
338	Flexible organic electrochemical transistors for chemical and biological sensing. <i>Nano Research</i> ,1	10	4	

337	The efficient redox electron transfer and powered polysulfide confinement of carbon doped tungsten nitride with multi-active sites towards high-performance lithium-polysulfide batteries. <i>Applied Surface Science</i> , 2020 , 525, 146625	6.7	4
336	Performance enhancement of single layer organic light-emitting diodes using chlorinated indium tin oxide as the anode <i>RSC Advances</i> , 2018 , 8, 11255-11261	3.7	4
335	Highly oriented perovskites for efficient light-emitting diodes with balanced charge transport. <i>Organic Electronics</i> , 2020 , 77, 105529	3.5	4
334	Internal standard fluorogenic probe based on vibration-induced emission for visualizing PTP1B in living cells. <i>Chemical Communications</i> , 2019 , 56, 58-61	5.8	4
333	Improvement of memory characteristics for an organic charge trapping memory by introduction of PS tunneling layer. <i>Organic Electronics</i> , 2020 , 87, 105967	3.5	4
332	Two-phase anion exchange synthesis: multiple passivation for highly efficient and stable CsPbCl3 nanocrystals. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 16083-16091	7.1	4
331	Tunable NIR Absorption Property of a Dithiolene Nickel Complex: A Promising NIR-II Absorption Material for Photothermal Therapy ACS Applied Bio Materials, 2021, 4, 4406-4412	4.1	4
330	Layer-by-Layer 2D Ultrathin Conductive Cu3(HHTP)2 Film for High-Performance Flexible Transparent Supercapacitors. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2100308	4.6	4
329	Stimuli-Responsive Deep-Blue Organic Ultralong Phosphorescence with Lifetime over 5 s for Reversible Water-Jet Anti-Counterfeiting Printing. <i>Angewandte Chemie</i> , 2021 , 133, 17231-17238	3.6	4
328	Recent progress in 1,4-diazafluorene-cored optoelectronic materials: A review. <i>Dyes and Pigments</i> , 2021 , 191, 109365	4.6	4
327	Preparation and Optoelectronic Applications of Two-Dimensional Nanocrystals Based on Metallo-Porphyrins. <i>Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica</i> , 2016 , 32, 2447-2461	3.8	4
326	Detection of defects on the surface of a semiconductor by terahertz surface plasmon polaritons. <i>Applied Optics</i> , 2016 , 55, 4139-44	0.2	4
325	Synthesis, structural characterization and reactivity towards phenol of a bis(silyl) platinum(II) complex. <i>Inorganica Chimica Acta</i> , 2016 , 451, 157-161	2.7	4
324	Palladium-catalyzed carbonylative annulation toward new [1,2,5]thiadiazole-fused heteroacenes for solution-processed field-effect transistors. <i>Tetrahedron Letters</i> , 2016 , 57, 4452-4455	2	4
323	Nature of Defect States within Amorphous NPB Investigated through Drive-Level Capacitance Profiling. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 165-174	3.8	4
322	Angular/linear-shaped indacenodithiophene (IDT) for donor-acceptor copolymers: Geometric shape effects on physical properties and photovoltaic performance. <i>Polymer</i> , 2019 , 162, 11-19	3.9	4
321	Accurately Stoichiometric Regulating Oxidation States in Hole Transporting Material to Enhance the Hole Mobility of Perovskite Solar Cells. <i>Solar Rrl</i> , 2020 , 4, 2000127	7.1	4
320	Highly efficient exciplex-emission from spiro[fluorene-9,9?-xanthene] derivatives. <i>Dyes and Pigments</i> , 2021 , 185, 108894	4.6	4

319	Defect Origin of Emission in CsCuI and Pressure-Induced Anomalous Enhancement. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 317-323	6.4	4
318	Tunable microstructures of ultralong organic phosphorescence materials. <i>Chemical Communications</i> , 2021 , 57, 7276-7279	5.8	4
317	A stable and ultrafast K ion storage anode based on phase-engineered MoSe. <i>Chemical Communications</i> , 2021 , 57, 3885-3888	5.8	4
316	Afterglow Carbon Dots: From Fundamentals to Applications. <i>Research</i> , 2021 , 2021, 1-27	7.8	4
315	A Bio-Inspired Molecular Design Strategy toward 2D Organic Semiconductor Crystals with Superior Integrated Optoelectronic Properties. <i>Small</i> , 2021 , 17, e2102060	11	4
314	Selective inactivation of Gram-positive bacteria in vitro and in vivo through metabolic labelling. <i>Science China Materials</i> ,1	7.1	4
313	Wide-bandgap organic nanocrystals with high mobility and tunable lasing emission. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 3171-3176	7.1	4
312	A small molecule with a big scissoring effect: sodium dodecyl sulfate working on two-dimensional metalBrganic frameworks. <i>CrystEngComm</i> , 2021 , 23, 1360-1365	3.3	4
311	Recent Structural Engineering of Polymer Semiconductors Incorporating Hydrogen Bonds <i>Advanced Materials</i> , 2022 , e2110639	24	4
310	Green flexible electronics based on starch. Npj Flexible Electronics, 2022, 6,	10.7	4
310	Green flexible electronics based on starch. <i>Npj Flexible Electronics</i> , 2022 , 6, Three alkaline earth metal-organic frameworks based on fluorene-containing carboxylates: syntheses, structures and properties. <i>Science China Chemistry</i> , 2017 , 60, 115-121	10.7 7.9	3
, in the second	Three alkaline earth metal-organic frameworks based on fluorene-containing carboxylates:		
309	Three alkaline earth metal-organic frameworks based on fluorene-containing carboxylates: syntheses, structures and properties. <i>Science China Chemistry</i> , 2017 , 60, 115-121 Engineering the mobility increment in pentacene-based field-effect transistors by fast cooling of	7.9	3
309	Three alkaline earth metal-organic frameworks based on fluorene-containing carboxylates: syntheses, structures and properties. <i>Science China Chemistry</i> , 2017 , 60, 115-121 Engineering the mobility increment in pentacene-based field-effect transistors by fast cooling of polymeric modification layer. <i>Journal Physics D: Applied Physics</i> , 2017 , 50, 215107 An Overview of Molecular Packing Mode in Two-Dimensional Organic Nanomaterials via	7.9	3
309 308 307	Three alkaline earth metal-organic frameworks based on fluorene-containing carboxylates: syntheses, structures and properties. <i>Science China Chemistry</i> , 2017 , 60, 115-121 Engineering the mobility increment in pentacene-based field-effect transistors by fast cooling of polymeric modification layer. <i>Journal Physics D: Applied Physics</i> , 2017 , 50, 215107 An Overview of Molecular Packing Mode in Two-Dimensional Organic Nanomaterials via Supramolecular Assembly. <i>Chinese Journal of Chemistry</i> , 2019 , 37, 405-416 Crystallization induced enantiomer division (CIED) of Eexpanded benzoacridine regioisomers. <i>Dyes</i>	7·9 3 4·9	3 3
309 308 307 306	Three alkaline earth metal-organic frameworks based on fluorene-containing carboxylates: syntheses, structures and properties. <i>Science China Chemistry</i> , 2017 , 60, 115-121 Engineering the mobility increment in pentacene-based field-effect transistors by fast cooling of polymeric modification layer. <i>Journal Physics D: Applied Physics</i> , 2017 , 50, 215107 An Overview of Molecular Packing Mode in Two-Dimensional Organic Nanomaterials via Supramolecular Assembly. <i>Chinese Journal of Chemistry</i> , 2019 , 37, 405-416 Crystallization induced enantiomer division (CIED) of Expanded benzoacridine regioisomers. <i>Dyes and Pigments</i> , 2019 , 170, 107616 Biomass-Templated Fabrication of Metallic Materials for Photocatalytic and Bactericidal	7.9 3 4.9 4.6	3 3 3
309 308 307 306 305	Three alkaline earth metal-organic frameworks based on fluorene-containing carboxylates: syntheses, structures and properties. <i>Science China Chemistry</i> , 2017 , 60, 115-121 Engineering the mobility increment in pentacene-based field-effect transistors by fast cooling of polymeric modification layer. <i>Journal Physics D: Applied Physics</i> , 2017 , 50, 215107 An Overview of Molecular Packing Mode in Two-Dimensional Organic Nanomaterials via Supramolecular Assembly. <i>Chinese Journal of Chemistry</i> , 2019 , 37, 405-416 Crystallization induced enantiomer division (CIED) of Expanded benzoacridine regioisomers. <i>Dyes and Pigments</i> , 2019 , 170, 107616 Biomass-Templated Fabrication of Metallic Materials for Photocatalytic and Bactericidal Applications. <i>Materials</i> , 2019 , 12,	7.9 3 4.9 4.6	3 3 3 3

301	THz mode-coupling in photonic-crystal urface-plasmon-coupled waveguides. <i>Applied Physics B: Lasers and Optics</i> , 2015 , 118, 387-392	1.9	3
300	Multi-color Poly(Fluorenylene Ethynylene)s with On-Chain Phosphorescent Iridium(III) Complexes Through Energy Transfer. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2015 , 25, 720)- 7 29	3
299	Memory Behaviors Based on ITO/Graphene Oxide/Al Structure. <i>Chinese Physics Letters</i> , 2015 , 32, 07720	11.8	3
298	A Novel Method of Fabricating Flexible Transparent Conductive Large Area Graphene Film. <i>Chinese Physics Letters</i> , 2015 , 32, 076802	1.8	3
297	Supramolecular assemblies through hostguest interactions of 18-crown-6 with ammonium salts: geometric effects of amine groups on the hydrogen-bonding architectures. <i>Supramolecular Chemistry</i> , 2015 , 27, 213-223	1.8	3
296	Solution-processed self-assemble engineering PDI derivative polymorphisms with optoelectrical property tuning in organic field-effect transistors. <i>Organic Electronics</i> , 2020 , 83, 105777	3.5	3
295	New xanthone derivatives as host materials: Improvement of carriers balance for high-efficiency green phosphorescent OLEDs using two host materials. <i>Dyes and Pigments</i> , 2020 , 178, 108333	4.6	3
294	Isolated asymmetric bilateral steric conjugated polymers with thickness-independent emission for efficient and stable light-emitting optoelectronic devices. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 506	54 ⁷ -507	03
293	NIR-II probe modified by poly(L-lysine) with efficient ovalbumin delivery for dendritic cell tracking. <i>Science China Chemistry</i> , 2020 , 63, 1272-1280	7.9	3
292	Catalyst-free photocyclization for the synthesis of spiro-fused aromatic organic semiconductor based on SFX. <i>Tetrahedron</i> , 2018 , 74, 2063-2067	2.4	3
291	Polymer-carbon dot hybrid structure for a self-rectifying memory device by energy level offset and doping <i>RSC Advances</i> , 2018 , 8, 13917-13920	3.7	3
290	Heteroepitaxial growth of ferroelectric films on Si substrates and their applications in waveguides and electro-optics. <i>Journal of Alloys and Compounds</i> , 2018 , 749, 967-971	5.7	3
289	Excellent Charge-Storage Properties of Polystyrene/SFXs Electret Films by Repeated Contact with an AFM Probe. <i>Physica Status Solidi (B): Basic Research</i> , 2018 , 255, 1700611	1.3	3
288	Rational design of fluorescent probe for Hg by changing the chemical bond type <i>RSC Advances</i> , 2018 , 8, 12276-12281	3.7	3
287	Inverted polymer light-emitting devices using a conjugated starburst macromolecule as an interlayer. <i>RSC Advances</i> , 2016 , 6, 84342-84347	3.7	3
286	Hepta-thienoacenes with Internal Carbazole: Synthesis, Regioselectivities and Organic Field-Effect Transistor Applications. <i>Asian Journal of Organic Chemistry</i> , 2018 , 7, 2271-2278	3	3
285	Ligand-displacement-based two-photon fluorogenic probe for visualizing mercapto biomolecules in live cells, Drosophila brains and zebrafish. <i>Analyst, The</i> , 2018 , 143, 3433-3441	5	3
284	Light absorption and efficiency enhancements for organic photovoltaic devices with Au@PSS core-shell tetrahedra. <i>Organic Electronics</i> , 2018 , 61, 96-103	3.5	3

(2013-2019)

283	A Comparison Study of Physicochemical Properties and Stabilities of H-Shaped Molecule and the Corresponding Polymer. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2019 , 37, 11-17	3.5	3
282	The influence of two-dimensional organic adlayer thickness on the ultralow frequency Raman spectra of transition metal dichalcogenide nanosheets. <i>Science China Materials</i> , 2019 , 62, 181-193	7.1	3
281	Organic-inorganic hybrid perovskite quantum dot light-emitting diodes using a graphene electrode and modified PEDOT:PSS <i>RSC Advances</i> , 2019 , 9, 20931-20940	3.7	3
280	In situ growth of monocrystal p-CuGaO2 nanosheet as a hole transfer layer in a photoelectrode for solar hydrogen production. <i>Journal Physics D: Applied Physics</i> , 2019 , 52, 405501	3	3
279	Wash-induced multicolor tuning of carbon nano-dot/micro-belt hybrids with full recyclability and stable color convertibility. <i>Nanoscale</i> , 2019 , 11, 14592-14597	7.7	3
278	A fully fused non-fullerene acceptor containing angular-shaped S,N-heteroacene and perylene diimide for additive-free organic solar cells. <i>New Journal of Chemistry</i> , 2019 , 43, 13775-13782	3.6	3
277	Thermal imprinting and vapor annealing of interfacial layers for high-performance organic light-emitting diodes. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 10281-10288	7.1	3
276	Theoretical Studies on Novel Gridspiroarenes: Structures, Noncovalent Interactions and Reorganization Energies. <i>Chinese Journal of Chemistry</i> , 2019 , 37, 915-921	4.9	3
275	A novel microfluidic system for the rapid analysis of protein thermal stability. <i>Analyst, The</i> , 2014 , 139, 2683-6	5	3
274	Luminescent and thermal properties of a novel red-emitting silicon fluoride acrylate-Eu(III) copolymer for white LEDs. <i>Materials Chemistry and Physics</i> , 2014 , 147, 777-782	4.4	3
273	Substituent effect of fulleropyrrolidine acceptors on bilayer organic solar cells. <i>Synthetic Metals</i> , 2014 , 187, 118-122	3.6	3
272	Research of carrier mobility in NPD through negative differential susceptance spectra. <i>EPJ Applied Physics</i> , 2014 , 68, 30202	1.1	3
271	Ni-Co Binary Hydroxide Nanotubes with Three-Dimensionally Structured Nanoflakes: Synthesis and Application as Cathode Materials for Hybrid Supercapacitors. <i>Chemistry - A European Journal</i> , 2017 , 23, 10133-10138	4.8	3
270	White Organic Light-Emitting Diodes Based on Exciton and Electroplex Dual Emissions. <i>Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica</i> , 2017 , 33, 1057-1064	3.8	3
269	Au nanorods-incorporated plasmonic-enhanced inverted organic solar cells. <i>Chinese Physics B</i> , 2015 , 24, 115202	1.2	3
268	A fluorescence nanosensor for lipase activity: enzyme-regulated quantum dots growth in situ. <i>RSC Advances</i> , 2015 , 5, 73051-73057	3.7	3
267	Three-dimensional lanthanide coordination polymers with p-phenylenediacrylates: Syntheses, structures, and properties. <i>Inorganica Chimica Acta</i> , 2012 , 384, 184-188	2.7	3
266	EConjugated Molecules Based on Truxene Cores and Pyrene Substitution: Synthesis and Properties. <i>Journal of Chemical Research</i> , 2013 , 37, 242-247	0.6	3

265	Efficient Green Organic Light-Emitting Devices Based on a Solution-Processable Starburst Molecule. <i>Chinese Physics Letters</i> , 2013 , 30, 098501	1.8	3
264	Di-[2)-cyanido-dicyanidobis{2,2'-[ethane-1,2-diylbis(nitrilo-methyl-idyne)]diphenolato}(1,4,8,11-tetra-a: methanol disolvate. <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2010 , 66, m661-2	zacyclo	-tetra-dec 3
263	Fabrication and Characterization of Networked Graphene Devices Based on Ultralarge Single-Layer Graphene Sheets. <i>IEEE Nanotechnology Magazine</i> , 2011 , 10, 467-471	2.6	3
262	High-contrast top-emitting organic light-emitting devices. <i>Chinese Physics B</i> , 2012 , 21, 108506	1.2	3
261	Kinetic studies of the oxygen-atom transfer reaction between bis(diethyldithio-carbamato) dioxomolybdenum and triphenylphosphine. <i>Polyhedron</i> , 1997 , 16, 2163-2167	2.7	3
260	Covalent integration of luminescent Eu (III) complex onto composite conductors or semiconducting substrates by grafting with organosilane. <i>Thin Solid Films</i> , 2008 , 517, 469-473	2.2	3
259	AMPHIPHILIC COMB-SHAPED DIBLOCK POLYMER BRUSHES ONSI(100) SUBSTRATES VIA SURFACE-INITIATED ATOM TRANSFER RADICAL POLYMERIZATION. Surface Review and Letters, 2006 , 13, 251-257	1.1	3
258	In situ x-ray photoelectron spectroscopy study of evaporated magnesium on chemically synthesized polypyrrole films. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2001 , 19, 2680-2688	2.9	3
257	Synthesis and characterization of a new yellowgreen light-emitting polymer Depoly{1,4-bis[3[4?Butylphenyl)thienyl]-2,5-di(2?-ethylhexyloxy)phenylene}. <i>Thin Solid Films</i> , 2000 , 363, 114-117	2.2	3
256	Synthesis and Characterization of a Novel Green Photoluminescent Silicon-Containing Poly(p-phenylenevinylene). <i>Bulletin of the Chemical Society of Japan</i> , 1999 , 72, 1941-1946	5.1	3
255	Gridization-Driven Mesoscale Self-assembly of Conjugated Nanopolymers into Luminescence-anisotropic Photonic Crystals <i>Advanced Materials</i> , 2022 , e2109399	24	3
254	Fabrication of semiconducting polymer-blend dots with strong near-infrared fluorescence and afterglow luminescence for bioimaging. <i>Dyes and Pigments</i> , 2022 , 200, 110124	4.6	3
253	Stable and Efficient Red Perovskite Light-Emitting Diodes Based on Ca-Doped CsPbI Nanocrystals <i>Research</i> , 2021 , 2021, 9829374	7.8	3
252	Growth and Degradation Kinetics of Organic-Inorganic Hybrid Perovskite Films Determined by In Situ Grazing-Incidence X-Ray Scattering Techniques <i>Small Methods</i> , 2021 , 5, e2100829	12.8	3
251	Recent Advances in Flexible Zn-Air Batteries: Materials for Electrodes and Electrolytes <i>Small Methods</i> , 2022 , 6, e2101116	12.8	3
250	Ultrathin Metal©rganic Framework Nanosheets as Nano-Floating-Gate for High Performance Transistor Memory Device. <i>Advanced Functional Materials</i> ,2110784	15.6	3
249	Surficial nanoporous carbon with high pyridinic/pyrrolic N-Doping from sp3/sp2-N-rich azaacene dye for lithium storage. <i>RSC Advances</i> , 2017 , 7, 53770-53777	3.7	3
248	3D-conductive pathway written on leather for highly sensitive and durable electronic whisker. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 9748-9754	7.1	3

(2021-2012)

247	Progress of the improved mobilities of organic field-effect transistors based on dielectric surface modification. <i>Wuli Xuebao/Acta Physica Sinica</i> , 2012 , 61, 228502	0.6	3
246	High crystalline small molecule manipulates polymer-fullerene morphology and enables 20% improvement in fill factor and device performance. <i>Organic Electronics</i> , 2020 , 77, 105419	3.5	3
245	Facile Synthesis of Polysubstituted Indolizines via One-Pot Reaction of 1-Acetylaryl 2-Formylpyrroles and Enals. <i>Chemistry - an Asian Journal</i> , 2020 , 15, 352-355	4.5	3
244	A benzoindole-cored building block for deep blue fluorescent materials: synthesis, photophysical properties, and applications in organic light-emitting diodes. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 16870-16879	7.1	3
243	Anion-dependent topochemical conversion of CoAl-LDH microplates to hierarchical superstructures of CoOOH nanoplates with controllable orientation. <i>Chemical Communications</i> , 2020 , 56, 10285-10288	5.8	3
242	Injection and Retention Characterization of Trapped Charges in Electret Films by Electrostatic Force Microscopy and Kelvin Probe Force Microscopy. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2020 , 217, 2000190	1.6	3
241	Electrospun Supramolecular Hybrid Microfibers from Conjugated Polymers: Color Transformation and Conductivity Evolution. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2021 , 39, 824-830	3.5	3
240	Hole-Transporting Low-Dimensional Perovskite for Enhancing Photovoltaic Performance. <i>Research</i> , 2021 , 2021, 9797053	7.8	3
239	Effective carrier transport tuning of CuOx quantum dots hole interfacial layer for high-performance inverted perovskite solar cell. <i>Applied Surface Science</i> , 2021 , 547, 149117	6.7	3
238	Single-Metallic Thermoresponsive Coordination Network as a Dual-Parametric Luminescent Thermometer. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 35905-35913	9.5	3
237	An Artificial Olfactory Memory System for Monitoring and Recording of Volatile Organic Compounds. <i>Advanced Materials Technologies</i> ,2100366	6.8	3
236	Ultrathin two-dimensional hybrid perovskites toward flexible electronics and optoelectronics <i>National Science Review</i> , 2022 , 9, nwab129	10.8	3
235	Coaxial-cable hierarchical tubular MnO@FeO@C heterostructures as advanced anodes for lithium-ion batteries. <i>Nanotechnology</i> , 2019 , 30, 094002	3.4	3
234	Cocrystal engineering of molecular rearrangement: a Eurn-on[approach for high-performance N-type organic semiconductors. <i>Journal of Materials Chemistry C</i> ,	7.1	3
233	Molecule Recognition and Release Behavior of Naphthalenediimide Derivative via Supramolecular Interactions. <i>Macromolecular Rapid Communications</i> , 2021 , 42, e2000655	4.8	3
232	A green-synthesized phosphorescent carbon dot composite for multilevel anti-counterfeiting. <i>Nanoscale Advances</i> , 2021 , 3, 4536-4540	5.1	3
231	Core@shell and lateral heterostructures composed of SnS and NbS. <i>Nanoscale</i> , 2021 , 13, 5489-5496	7.7	3
230	Photoexcitation Dynamics of Thiophene Eluorene Fluorophore in Matrix Encapsulation for Deep-Blue Amplified Spontaneous Emission. <i>ACS Applied Polymer Materials</i> , 2021 , 3, 1306-1313	4.3	3

229	Efficient emissive fluorene-based pli conjugated porous materials for near-white electroluminescence: benefits of metal-free Friedel (Trafts green polymerization. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 11968-11971	7.1	3
228	Rare-earth Doped Nanoparticles with Narrow NIR-II Emission for Optical Imaging with Reduced Autofluorescence. <i>Chemical Research in Chinese Universities</i> , 2021 , 37, 943-950	2.2	3
227	Elastic organic crystals with ultralong phosphorescence for flexible anti-counterfeiting. <i>Npj Flexible Electronics</i> , 2021 , 5,	10.7	3
226	Modulating Tri-Mode Emission for Single-Component White Organic Afterglow. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 24984-24990	16.4	3
225	Influence of Molecular Weight of Polymer Electret on the Synaptic Organic Field-Effect Transistor Performance. <i>Advanced Electronic Materials</i> ,2200155	6.4	3
224	Intramolecular oxidative cyclodehydrogenation route for the synthesis of strap-like conjugated polymers. <i>RSC Advances</i> , 2017 , 7, 10763-10773	3.7	2
223	Surface-controlled preparation of EuWO(OH) nanobelts and their hybrid with Au nanoparticles as a novel enzyme-free sensing platform towards hydrogen peroxide. <i>Chemical Communications</i> , 2017 , 53, 5063-5066	5.8	2
222	Highly pH-responsive sensor based on amplified spontaneous emission coupled to colorimetry. <i>Scientific Reports</i> , 2017 , 7, 46265	4.9	2
221	Comparative study on doping effects in Bi1NDyxFe1NMnyO3 nanoparticles fabricated by sol-gel technique. <i>Ceramics International</i> , 2017 , 43, 11529-11533	5.1	2
220	Investigation of Self-Assembly and Charge-Transport Property of One-dimensional PDIECNI Nanowires by Solvent-Vapor Annealing. <i>Materials</i> , 2019 , 12,	3.5	2
219	The enhancement of 21.2%-power conversion efficiency in polymer photovoltaic cells by using mixed Au nanoparticles with a wide absorption spectrum of 400 nml 000 nm. <i>Chinese Physics B</i> , 2015 , 24, 045201	1.2	2
218	Synthesis, structural characterization and reactivity of a bis (phosphine) (silyl) platinum (II) complex. <i>Journal of Coordination Chemistry</i> , 2015 , 68, 4203-4211	1.6	2
217	A General Strategy to Encapsulate Semiconducting Polymers within PEGylated Mesoporous Silica Nanoparticles for Optical Imaging and Drug Delivery. <i>Particle and Particle Systems Characterization</i> , 2020 , 37, 1900483	3.1	2
216	Flexible Metal-Free Memory Electronic Made of Econjugation-Interrupted Hyperbranched Polymer Switch and Reduced Graphene Oxide Electrodes. <i>Macromolecular Materials and Engineering</i> , 2020 , 305, 2000050	3.9	2
215	Charge trapping in the films blended with polystyrene and different cyano-substituted spirofluorenes organic small molecules. <i>Applied Physics A: Materials Science and Processing</i> , 2020 , 126, 1	2.6	2
214	A transparent flexible volatile memory with ultrahigh ON/OFF ratio and ultralow switching voltage. <i>Organic Electronics</i> , 2020 , 82, 105708	3.5	2
213	Improving the out-coupling efficiency of polymer light-emitting diodes with soft nanoimprinted random corrugated structures. <i>Journal of Applied Physics</i> , 2020 , 127, 125501	2.5	2
212	Asymmetric Thermally Activated Delayed Fluorescence Materials With Aggregation-Induced Emission for High-Efficiency Organic Light-Emitting Diodes. <i>Frontiers in Chemistry</i> , 2020 , 8, 49	5	2

211	The Dimensionality Transition between Three-Dimensional and Two-Dimensional Organic Microcrystals: Specific Symmetry and Selective Adhesion. <i>ACS Omega</i> , 2020 , 5, 3749-3754	3.9	2
210	Improved efficiency of single-component active layer photovoltaics by optimizing conjugated diblock copolymers. <i>New Journal of Chemistry</i> , 2020 , 44, 2714-2720	3.6	2
209	Effects of Anionic Geometries on Hydrogen-Bonding Networks of 1-(4-pyridyl) Piperazine. <i>Journal of Chemical Crystallography</i> , 2016 , 46, 309-323	0.5	2
208	Investigation of terahertz surface plasmon modulation with optical injection of free carriers. <i>Optical Engineering</i> , 2016 , 55, 064109	1.1	2
207	Enhanced performance of poly(3-hexylthiophene-2,5-diyl):[6,6]-phenyl-C61-butyric acid methyl ester solar cells by UV irradiation. <i>Thin Solid Films</i> , 2016 , 600, 136-141	2.2	2
206	Theoretical Exploration of Carrier Dynamics in Amorphous Pyrene-Fluorene Derivative Organic Semiconductors. <i>ACS Omega</i> , 2019 , 4, 14124-14132	3.9	2
205	High Triplet Energy Phosphine Sulfide Host Materials with Selectively Modulated Electrical Performance for Blue Electrophosphorescence. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 15	723 ³ 15	7 2 8
204	From Intrinsic Bipolar Transport to the Abnormal Curves of Mobility E 1/2 in the Common Hole-Transporting Materials. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 18264-18269	3.8	2
203	Two-component ratiometric sensor for Cu detection on paper-based device. <i>Analytical and Bioanalytical Chemistry</i> , 2019 , 411, 6165-6172	4.4	2
202	The enhanced phosphorescence from Alq3 fluorescent materials by phosphor sensitization. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2014 , 291, 44-47	4.7	2
201	Theoretical investigation on the electronic and optical properties of diarylfluorene-based Estacked molecules as supramolecular semiconductors. <i>Chemical Physics Letters</i> , 2013 , 578, 150-155	2.5	2
200	Photophysical properties of chirality: Experimental and theoretical studies of (R)- and (S)-binaphthol derivatives as a prototype case. <i>Chemical Physics</i> , 2013 , 412, 34-40	2.3	2
199	Effect of metal centres and substituents on the structure and optoelectronic properties of diarylethene compounds: A theoretical study. <i>Science China Chemistry</i> , 2013 , 56, 137-147	7.9	2
198	The Catalytic Properties of a Copper-Based Nanoscale Coordination Polymer Fabricated by a Solvent-Etching Top-Down Route. <i>European Journal of Inorganic Chemistry</i> , 2017 , 2017, 4803-4807	2.3	2
197	A 2D Metal-Organic Framework Based on 9-(Pyridin-4-yl)-9H-carbazole-3,6-dicarboxylic Acid: Synthesis, Structure and Properties. <i>Chinese Journal of Chemistry</i> , 2017 , 35, 1869-1874	4.9	2
196	Zeolites as host matrix for luminescent carbon dots: a new class of thermally activated delayed fluorescence materials with 350 ms delayed decay time. <i>Science China Chemistry</i> , 2017 , 60, 1147-1148	7.9	2
195	Preparation of non-covalent Metalloporphyrin/C60 Composite and its Electrocatalysis to Hydrogen Peroxide. <i>Electroanalysis</i> , 2017 , 29, 696-701	3	2
194	Catalyst-free synthesis of reduced graphene oxideBarbon nanotube hybrid materials by acetylene-assisted annealing graphene oxide. <i>Applied Physics Letters</i> , 2012 , 101, 123107	3.4	2

193	A thermal stable cathode buffer based on an inexpensive tetranuclear zinc(II) complex for organic photovoltaic devices. <i>Science China Chemistry</i> , 2012 , 55, 2562-2566	7.9	2
192	Supramolecular Organic Salts Constructed from 6-Hydroxyquinoline and Nitrobenzoic Acids. Journal of Chemical Crystallography, 2012 , 42, 905-910	0.5	2
191	An unusual (3,4)-connected cubic-C3N4 type network constructed with [FeIII(Tp)(CN)3][(Tp[± hydrotris(pyrazolyl)borate). <i>CrystEngComm</i> , 2013 , 15, 3772	3.3	2
190	Alternating pyrenefluorene linear copolymers: Influence of non-conjugated and conjugated pyrene on thermal and optoelectronic properties. <i>Synthetic Metals</i> , 2013 , 174, 33-41	3.6	2
189	Theoretical study of the electronic ground states and low-lying singlet excited states of thiophene-based spirofluorenes. <i>Science China: Physics, Mechanics and Astronomy</i> , 2011 , 54, 884-889	3.6	2
188	Vibrational spectroscopy study on ⊞nd ∰hases in iridium-complex-containing polyfluorenes. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2011 , 8, 2713-2716		2
187	Photoluminescence properties of copolymers with iridium-complex Ir(thq)2(dbm) units in the fluorene main chain. <i>Physics Procedia</i> , 2011 , 14, 34-37		2
186	Bis(tri-2-pyridyl-amine)-nickel(II) bis-(perchlorate). <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2010 , 67, m78		2
185	Extracting the single-molecule fluorescence trajectories of folding protein in single-pair fluorescence resonance energy transfer experiment. <i>Journal of Nanoscience and Nanotechnology</i> , 2009 , 9, 1176-80	1.3	2
184	He I and He II photoelectron spectra of Dthionobutyrolactones and Dbutyrolactones. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 1998 , 88-91, 91-96	1.7	2
183	The Photoelectron Spectrum of 2,2?-Bitellurophene. <i>Journal of Chemical Research Synopses</i> , 1998 , 438-	439	2
182	Synthesis and Optical Properties of Starburst Carbazoles Based on 9-Phenylcarbazole Core. <i>Synlett</i> , 2006 , 2006, 2841-2845	2.2	2
181	Synthesis of blue light emitting copolymers by oxidative coupling reaction. <i>Synthetic Metals</i> , 2003 , 135-136, 201-202	3.6	2
180	NiFe2O4 Ferrofluid to Detect Magnetic Field Using Microfiber Interferometry. <i>IEEE Sensors Journal</i> , 2022 , 1-1	4	2
179	SYNTHESIS, CHARACTERIZATION AND QUENCHING BEHAVIOR OF A CATIONIC POLY(p-PHENYLENEVINYLENE) RELATED COPOLYMER. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2009 , 27, 889	3.5	2
178	High-refractive-index capping layer improves top-light-emitting device performance. <i>Applied Optics</i> , 2020 , 59, 4114-4121	1.7	2
177	High-efficiency solution-processed WOLEDs with very high color rendering index based on a macrospirocyclic oligomer matrix host. <i>Optical Materials Express</i> , 2018 , 8, 3208	2.6	2
176	Covalent nanosynthesis of fluorene-based macrocycles and organic nanogrids. <i>Organic and Biomolecular Chemistry</i> , 2021 ,	3.9	2

175	SbS-based conversion-alloying dual mechanism anode for potassium-ion batteries <i>IScience</i> , 2021 , 24, 103494	6.1	2
174	Organic Fluorophores for 1064'nm Excited NIR-II Fluorescence Imaging. <i>Frontiers in Chemistry</i> , 2021 , 9, 769655	5	2
173	Recent Development of Photodeformable Crystals: From Materials to Mechanisms. <i>Research</i> , 2021 , 2021, 9816535	7.8	2
172	Application of Fused-Heterocyclic Compounds in Red Phosphorescent Iridium(III) Complexes. <i>Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica</i> , 2012 , 28, 1556-1569	3.8	2
171	Cyano-substituted Spiro[fluorine-9,9'-xanthene] Derivatives: Exciplex Emission and Property Manipulation. <i>Acta Chimica Sinica</i> , 2020 , 78, 680	3.3	2
170	Ultrapure Blue Phosphorescent Organic Light-Emitting Diodes Employing a Twisted Pt(II) Complex. <i>ACS Applied Materials & amp; Interfaces</i> , 2021 ,	9.5	2
169	Evoking Synergetic Effect of Dual Thermally Activated Delayed Fluorescent Hosts for High-Efficiency Sensitized Fluorescent Organic Light-Emitting Diodes. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 1836-1843	3.8	2
168	Design, synthesis and evaluation of protein disulfide isomerase inhibitors with nitric oxide releasing activity. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2020 , 30, 126898	2.9	2
167	Organic Micro-/Nanocrystals of SFX-Based Attractor R epulsor Molecules with the Feature of Crystal-Induced Luminescence Enhancement. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 6249-6259	3.8	2
166	Suppressed Oxidation and Photodarkening of Hybrid Tin Iodide Perovskite Achieved with Reductive Organic Small Molecule. <i>ACS Applied Energy Materials</i> , 2021 , 4, 4704-4710	6.1	2
165	Site-Selective Transformation for Preparing Tripod-like NiCo-Sulfides@Carbon Boosts Enhanced Areal Capacity and Cycling Reliability. <i>ACS Applied Materials & District Science</i> , 2021, 13, 25316-25324	9.5	2
164	Achieving Organic Smart Fluorophores by Controlling the Balance between Intermolecular Interactions and External Stimuli. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 27491-27499	9.5	2
163	Selective Introduction of Carbazole and Diphenylamine into Spirofluorenexanthene Core for Different Phosphorescent Hosts. <i>Chinese Journal of Chemistry</i> , 2016 , 34, 771-777	4.9	2
162	Improved amplified spontaneous emission of organic gain media with metallic electrodes by introducing a low-loss solution-processed organic interfacial layer. <i>RSC Advances</i> , 2016 , 6, 49903-49909	3.7	2
161	Synthesis, structural characterization and reactivity towards methanol of a bis(silyl)platinum(II) complex bearing a chelating depe ligand. <i>Inorganica Chimica Acta</i> , 2016 , 446, 93-96	2.7	2
160	Influence of the intramolecular donor-acceptor distance on the performance of double-cable polymers. <i>European Polymer Journal</i> , 2019 , 112, 38-44	5.2	2
159	Low E hreshold sky-blue gain medium from a Triazine-capped ladder-type oligomer neat film. <i>Organic Electronics</i> , 2020 , 76, 105452	3.5	2
158	Optoelectronic properties and aggregation effects on the performance of planar versus contorted pyrene-cored perylenediimide dimers for organic solar cells. <i>Dyes and Pigments</i> , 2020 , 173, 107976	4.6	2

157	An eco-friendly nitrate-free method for the synthesis of silver nanowires with reduced diameters. Journal of Materials Chemistry C, 2021 , 9, 1874-1879	7.1	2
156	Highly efficient ultra-flexible tandem organic light-emitting diodes adopting a non-doped charge generation unit. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 8570-8578	7.1	2
155	N-Heterocyclic carbene-catalyzed [3 + 3] annulation of bromoenals with 2-aminochromones to access chromeno[2,3-]pyridinones. <i>Organic and Biomolecular Chemistry</i> , 2021 , 19, 4882-4886	3.9	2
154	Non-destructive plasma frequency measurement for a semiconductor thin film using broadband surface plasmon polaritons. <i>Optics Communications</i> , 2018 , 410, 926-929	2	2
153	Thermally Activated Delayed Fluorescence Materials Based on DonorAcceptor Molecular Systems 2018 , 377-423		2
152	High-k polymer dielectrics with different cross-linked networks for nonvolatile transistor memory device. <i>Organic Electronics</i> , 2021 , 96, 106222	3.5	2
151	Applications of Hyaluronic Acid Nanomaterials in Fluorescence/Photoacoustic Imaging and Phototherapy. <i>Acta Chimica Sinica</i> , 2021 , 79, 1097	3.3	2
150	Color regulation for Eu(tta)3phen/E7 composites by interaction between Eu(iii) complexes and liquid crystals. <i>Journal of Materials Chemistry C</i> ,	7.1	2
149	Enhancing the Deep-Blue Emission Property of Wide Bandgap Conjugated Polymers through a Self-Cross-Linking Strategy. <i>ACS Applied Polymer Materials</i> , 2022 , 4, 2283-2293	4.3	2
148	Stiffness Engineering of Ti 3 C 2 T X MXene-Based Skin-Inspired Pressure Sensor with Broad-Range Ultrasensitivity, Low Detection Limit, and Gas Permeability. <i>Advanced Materials Interfaces</i> ,2200261	4.6	2
147	Effect of K Doping on the Performance of Aqueous Solution-Processed Cu(In,Ga)Se 2 Solar Cell. <i>Advanced Energy and Sustainability Research</i> ,2200006	1.6	2
146	Molecularly Controlled Quantum Well Width Distribution and Optoelectronic Properties in Quasi-2D Perovskite Light-Emitting Diodes <i>Journal of Physical Chemistry Letters</i> , 2022 , 4098-4103	6.4	2
145	Dual nanozyme based on ultrathin 2D conductive MOF nanosheets intergraded with gold nanoparticles for electrochemical biosensing of H2O2 in cancer cells. <i>Talanta</i> , 2022 , 123612	6.2	2
144	Mechanisms for self-templating design of micro/nanostructures toward efficient energy storage. Exploration,20210237		2
143	Reduced quenching effects of organic gain media with metallic electrodes via introducing a conjugated macroelectrolyte interlayer. <i>Journal of Applied Physics</i> , 2017 , 121, 035301	2.5	1
142	Stable pure-blue emission of poly(9,9-dioctylfluorene) via suppression of the green emission. <i>Journal of Applied Polymer Science</i> , 2017 , 134,	2.9	1
141	Controllable memristive patterns in poly(9,9-dioctylfluorene)-based sandwich device. <i>Organic Electronics</i> , 2017 , 49, 313-320	3.5	1
140	Well-defined structures and nanoscale morphology for all-conjugated BCPs. <i>Micro and Nano Letters</i> , 2019 , 14, 928-931	0.9	1

139	Enhancing Photovoltaic Performance by Cathode Interfacial Modification with Inorganic/Organic Gradient Diffusion Structures. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 ,	8.3	1
138	Intramolecular Catalyst Transfer over Sterically Hindered Arenes in Suzuki Cross-Coupling Reactions. <i>Asian Journal of Organic Chemistry</i> , 2019 , 8, 1506-1512	3	1
137	The interface effect between ZIXLIB crystal surface and C60: Strong charge-transfer (CT) vs weak CT state. <i>Chemical Physics Letters</i> , 2019 , 730, 266-270	2.5	1
136	A novel dual-band filter based on single-cavity CTSRR-loaded triangular substrate-integrated waveguide. <i>International Journal of Microwave and Wireless Technologies</i> , 2019 , 11, 894-898	0.8	1
135	Intentional anion incorporation to rationally modulate the size, shape and optical properties of lanthanide oxide nanocrystals. <i>Nanoscale</i> , 2019 , 11, 5633-5639	7.7	1
134	De-embedding zero-field signal in high-frequency magneto-impedance measurements of soft ferromagnetic materials. <i>Journal of Magnetism and Magnetic Materials</i> , 2019 , 484, 424-429	2.8	1
133	Tunable excitonic properties in two-dimensional heterostructures based on solution-processed PbI2 flakes. <i>Journal of Materials Science</i> , 2020 , 55, 10656-10667	4.3	1
132	Two novel neutral and ionic Ir(III) complexes based on the same bipolar main ligand: a comparative study of their photophysical properties and applications in solution-processed red organic light-emitting diodes. <i>New Journal of Chemistry</i> , 2020 , 44, 11310-11315	3.6	1
131	Concepts of the HOMO and LUMO Traps from the Carrier Dynamics of Organic Semiconductor Isomers ENPB and ENPB. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 2782-2790	3.8	1
130	Lasing: Host Exciton Confinement for Enhanced Fister-Transfer-Blend Gain Media Yielding Highly Efficient Yellow-Green Lasers (Adv. Funct. Mater. 17/2018). <i>Advanced Functional Materials</i> , 2018 , 28, 1870115	15.6	1
129	Molecular Dual-Rotators with Large Consecutive Emission Chromism for Visualized and High-Pressure Sensing. <i>ACS Omega</i> , 2018 , 3, 717-723	3.9	1
128	Rapid and Reusable Detection of Interferon-Gamma Based on Label-Free Single-Stranded DNA and Thioflavin T. <i>IEEE Sensors Journal</i> , 2018 , 18, 2313-2317	4	1
127	Cyclopentadithiophene based branched polymer electrets synthesized by friedel@rafts polymerization. <i>Journal of Polymer Science Part A</i> , 2016 , 54, 3140-3150	2.5	1
126	Membrane Reconstitution of Monoamine Oxidase Enzymes on Supported Lipid Bilayers. <i>Langmuir</i> , 2018 , 34, 10764-10773	4	1
125	Oxidation for unsymmetrical bromo-1,10-phenanthrolines and subsequent hydroxylation, decarbonylation and chlorination reactions. <i>Tetrahedron</i> , 2018 , 74, 4495-4503	2.4	1
124	Polydiarylfluorene Molecular Weight Effects on 町onformation Formation for Amplified Spontaneous Emission for Optoelectronic Applications. <i>ACS Applied Polymer Materials</i> , 2019 , 1, 2352-2	35 ⁹³	1
123	Utilization of triplet excited states in organic semiconductors. <i>Journal of Semiconductors</i> , 2019 , 40, 070	4 <u>02</u>	1
122	A Recyclable Nanocarbon White Emitter via the Synergy between Carbon Dots and Organic Sheet. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 14677-14684	8.3	1

121	Overdamping Carrier Transport and Quantitative Thermodynamic Analyses of Traps in Organic Semiconductor NPB. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 28015-28020	3.8	1
120	Topochemical pyrolytic synthesis of quasi-Mxene hybrids via ionic liquid-iron phthalocyanine as a self-template. <i>Chemical Communications</i> , 2019 , 55, 771-774	5.8	1
119	Pressure-induced metallization of black arsenic. <i>Journal of Physics Condensed Matter</i> , 2019 , 31, 505501	1.8	1
118	Transition metal oxide as anode interface buffer for impedance spectroscopy. <i>EPJ Applied Physics</i> , 2015 , 72, 30201	1.1	1
117	Morphology-Tunable Fluorescent Nanoparticles: Synthesis, Photophysical Properties and Two-Photon Cell Imaging. <i>Chinese Journal of Chemistry</i> , 2015 , 33, 888-896	4.9	1
116	Optical modulation of terahertz surface plasmon propagated on surfaces of semiconductors 2015 ,		1
115	Pyrene substituted terfluorenes: special influence of non-conjugated pyrene group on thermal and electroluminescent properties. <i>Materials Research Innovations</i> , 2013 , 17, 408-415	1.9	1
114	Diarylfluorene-Based Shape-Persistent Organic Nanomolecular Frameworks via Iterative Friedel-Crafts Protocol toward Multicomponent Organic Semiconductors. <i>Journal of Nanomaterials</i> , 2013 , 2013, 1-8	3.2	1
113	Stable Organic Field Effect Transistors with Low-Cost MoO 3 /Al Source-Drain Electrodes. <i>Chinese Physics Letters</i> , 2013 , 30, 028501	1.8	1
112	Theoretical study of photon emission from single quantum dot emitter coupled to surface plasmons. <i>Frontiers of Physics</i> , 2011 , 6, 313-319	3.7	1
111	A model for THz silicon nanotube transistor 2010 ,		1
110	Single-Walled Carbon Nanotube Networked Field-Effect Transistors Functionalized with Thiolated Heme for NO 2 Sensing. <i>Chinese Physics Letters</i> , 2011 , 28, 127304	1.8	1
109	3-Amino-benzonitrile-3,5-dinitro-benzoic acid (1/1). <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2011 , 67, o2833		1
108	Enhancement of Efficiency and Lifetime of Blue Organic Light-Emitting Diodes Using Two Dopants in Single Emitting Layer. <i>Advances in Materials Science and Engineering</i> , 2012 , 2012, 1-4	1.5	1
107	Self-assembly of a novel alternant amphiphilic poly(OPE-alt-TEO) copolymer: from nanowires to twist fibrillar architectures with molecular dimensions. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 167-71	3.6	1
106	The investigation of light outcoupling in blue top-emitting OLEDs 2010,		1
105	Polyfluorenes 2010 , 287-355		1
104	Study on incomplete fluorescence quenching of cationic poly(p-phenylenevinylene)s with different contents of cis- and trans-vinylic linkages. <i>Journal of Polymer Science Part A</i> , 2010 , 48, 336-341	2.5	1

103	A reversible electrical memory switching and its microscopic mechanism in amorphous (NCTA)2Ni(DMIT)2 thin films. <i>Materials Chemistry and Physics</i> , 1997 , 49, 179-183	4.4	1
102	The morphological study of liquid crystalline copolyesters based on PET and PHB. <i>Journal of Materials Science Letters</i> , 1997 , 16, 846-849		1
101	CADMIUM TELLURIDE NANOCRYSTALS: SYNTHESIS, GROWTH MODE AND EFFECT OF REACTION TEMPERATURE ON CRYSTAL STRUCTURES. <i>Nano</i> , 2008 , 03, 109-115	1.1	1
100	Polyfluorenes with On-Chain Metal Centers 2008 , 125-144		1
99	Molecular weight tuning and spectral studies of novel CN-PPVs via Gilch reaction route. <i>Journal of Applied Polymer Science</i> , 2007 , 106, 4124-4130	2.9	1
98	Theoretical study on single-molecule spectroscopy. Frontiers of Physics in China, 2006, 1, 405-411		1
97	Synthesis of luminescent polyurethane with Etonjugated segment in main chain. <i>Journal of Materials Science</i> , 2006 , 41, 3159-3162	4.3	1
96	In situ interfacial analysis of evaporated potassium on the electroluminescent fluorenethiophene copolymer. <i>Surface and Interface Analysis</i> , 2002 , 33, 552-558	1.5	1
95	The chemical, electrochemical synthesis and properties of poly[(4-decylthiophene-2,5-diyl)]. <i>Synthetic Metals</i> , 2002 , 126, 69-74	3.6	1
94	Unusual Solvatochromism of a New Conjugated Polymer Containing Oxadiazole. <i>Chemistry Letters</i> , 1998 , 27, 273-274	1.7	1
93	Cross-Scale Synthesis of Organic High- Semiconductors Based on Spiro-Gridized Nanopolymers <i>Research</i> , 2022 , 2022, 9820585	7.8	1
92	cis-Diaqua-bis(2,2',2''-tripyridylamine)zinc(II) bis-(perchlorate). <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2009 , 65, m1424		1
91	Compact terahertz spectrometer based on sequential modulation of disordered rough surfaces. <i>Optics Letters</i> , 2019 , 44, 6061-6064	3	1
90	Thiadiazoloquinoxaline-Based Semiconducting Polymer Nanoparticles for NIR-II Fluorescence Imaging-Guided Photothermal Therapy. <i>Frontiers in Bioengineering and Biotechnology</i> , 2021 , 9, 780993	5.8	1
89	Manipulating Electroluminochromism Behavior of Viologen-Substituted Iridium(III) Complexes through Ligand Engineering for Information Display and Encryption. <i>Advanced Materials</i> , 2021 , e210701	34	1
88	Strategy to modify the properties of polyfluorene by incorporating dimethoxyl-biphenyl at different type of connection site. <i>Journal of Photonics for Energy</i> , 2020 , 10, 1	1.2	1
87	Efficient tandem organic light-emitting diodes with non-doped structures. <i>Optics Letters</i> , 2020 , 45, 645	0 3 6453	1
86	Interface engineering of tungsten carbide/phosphide heterostructures anchored on N,P-codoped carbon for high-efficiency hydrogen evolution reaction. <i>Science China Materials</i> ,1	7.1	1

85	Programmable Broadband Responsive Lanthanide-Doped Nanoarchitecture for Information Encryption. <i>Advanced Optical Materials</i> , 2022 , 10, 2101843	8.1	1
84	Recent Advances in Metal-Gas Batteries with Carbon-Based Nonprecious Metal Catalysts. <i>Small</i> , 2021 , e2103747	11	1
83	SYNTHESIS AND CHARACTERIZATION OF A WATER-SOLUBLE POLY(FLUORENE-co-THIOPHENE) AND ITS FLUORESCENCE QUENCHING BY PROTEINS. <i>Acta Polymerica Sinica</i> , 2011 , 011, 724-728		1
82	Intrinsically Stretchable and Stable Ultra-Deep-Blue Fluorene-Based Polymer with a High Emission Efficiency of ¶0% for Polymer Light-Emitting Devices with a CIEy´= 0.06. <i>Advanced Functional Materials</i> ,2106564	15.6	1
81	Flexible Diodes/Transistors Based on Tunable p-n-Type Semiconductivity in Graphene/Mn-Co-Ni-O Nanocomposites. <i>Research</i> , 2021 , 2021, 9802795	7.8	1
80	An organic field effect transistor memory adopting octadecyltrichlorosilane self-assembled monolayer. <i>Journal Physics D: Applied Physics</i> , 2021 , 54, 095106	3	1
79	Charge-transfer pentacene/benzothiadiazole derivative cocrystal for UV-to-NIR Large Range Responsive Phototransistors. <i>Organic Electronics</i> , 2022 , 100, 106363	3.5	1
78	Elucidating the excited-state dynamics behavior in near-infrared Bodipy dye and aggregates toward biophotonics. <i>Science China Chemistry</i> , 2020 , 63, 1075-1081	7.9	1
77	Preparation of CdS nanoparticles at the monolayer of a positively charged surfactant 1998 , 261-264		1
76	Tandem energy upconversion in a conjugated polymer-sensitized core/shell nanocrystal. <i>Inorganic Chemistry Communication</i> , 2020 , 111, 107640	3.1	1
75	In Situ Formation of Ag2MoO4 in a Ag/MoO3 Buffer Layer Enables Highly Efficient Inverted Perovskite Cell for a Tandem Structure. <i>ACS Applied Energy Materials</i> , 2020 , 3, 9742-9749	6.1	1
74	Synthesis and optoelectronic properties of spirofluorenexanthene-based carbazole host materials. <i>New Journal of Chemistry</i> , 2020 , 44, 13439-13445	3.6	1
73	Abnormal Carrier Dynamics of Non-Doped P -TypelPoly(N-vinylcarbazole). <i>Macromolecular Chemistry and Physics</i> , 2020 , 221, 2000329	2.6	1
7 2	Functional Carbazole-Fullerene Complexes: A New Perspective of Carbazoles Acting as Nano-Octopus to Capture Globular Fullerenes. <i>Chemistry - A European Journal</i> , 2021 , 27, 10448-10455	4.8	1
71	Photothermal Responsive Singlet Oxygen Nanocarriers for Hypoxic Cancer Cell Ablation. <i>ChemBioChem</i> , 2021 , 22, 2546-2552	3.8	1
70	Isolation of two bis(silyl)nickel complexes with Si-Si bond formation in a single-crystal-to-single-crystal fashion. <i>Dalton Transactions</i> , 2019 , 48, 3433-3439	4.3	1
69	Me3SiBr/InCl3 catalyzed allylation of alcohols: Identifying the combined Lewis structure and investigating the reaction mechanism. <i>Journal of Physical Organic Chemistry</i> , 2019 , 32, e3902	2.1	1
68	Supramolecular Non-Helical One-Dimensional Channels and Microtubes Assembled from Enantiomers of Difluorenol. <i>Angewandte Chemie</i> , 2021 , 133, 4025-4029	3.6	1

(2020-2021)

67	One-Pot Synthesis of Spiro[fluorene-9,9'-xanthene] Derivatives. <i>Chinese Journal of Chemistry</i> , 2021 , 39, 701-709	4.9	1
66	Self-Assembly and Polymorphic Transformation of Butterfly-Shaped Organic Nanocrystals from a Windmill-like Bulky Small Molecule. <i>Crystal Growth and Design</i> , 2021 , 21, 1113-1121	3.5	1
65	Iodide ion receptors: shape-persistent macrocycles of syn/anti configurations. <i>New Journal of Chemistry</i> , 2021 , 45, 6796-6802	3.6	1
64	Constructing soft-conjugated materials from small molecules to polymers: a theoretical study. <i>Theoretical Chemistry Accounts</i> , 2018 , 137, 1	1.9	1
63	Membrane-Targetable Probes for Hg2+ Detection in Live Cells and Paper-Based Devices. <i>ChemistrySelect</i> , 2018 , 3, 9865-9871	1.8	1
62	Construction of Highly Proton-Conductive Zr(IV)-Based Metal-Organic Frameworks From Pyrrolo-pyrrole-Based Linkers with a Rhombic Shape. <i>Inorganic Chemistry</i> , 2021 , 60, 12129-12135	5.1	1
61	Fabrication of highly efficient blue top-emission organic light-emitting diodes on different reflective electrodes. <i>Organic Electronics</i> , 2021 , 95, 106197	3.5	1
60	Enhancing the light out-coupling efficiency of organic light-emitting devices with random corrugated structures. <i>Thin Solid Films</i> , 2021 , 732, 138791	2.2	1
59	The coordinated tunning optical, electrical and thermal properties of spiro-configured phenyl acridophopsphine oxide and sulfide for host materials. <i>Organic Electronics</i> , 2021 , 95, 106193	3.5	1
58	Desymmetrization of Cyclic 1,3-Diketones under -Heterocyclic Carbene Organocatalysis: Access to Organofluorines with Multiple Stereogenic Centers. <i>Research</i> , 2021 , 2021, 9867915	7.8	1
57	Efficient inverted organic light-emitting devices using a charge-generation unit as electron-injection layers. <i>Organic Electronics</i> , 2021 , 96, 106202	3.5	1
56	Interface Passivation and Hole Injection Improvement of Solution-Processed White Organic Light-Emitting Diodes through Embedding an Ultrathin Graphene Oxide Layer. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2100794	4.6	1
55	Electroluminescencedynamic Flexible Device for High Efficient Eradication of Drug-resistant Bacteria <i>Advanced Materials</i> , 2022 , e2200334	24	1
54	Tailored Polymeric Hole-Transporting Materials Inducing High-Quality Crystallization of Perovskite for Efficient Inverted Photovoltaic Devices <i>Small</i> , 2022 , e2106632	11	1
53	Bound States in the Continuum Empower Subwavelength Gratings for Refractometers in Visible. <i>Photonics</i> , 2022 , 9, 292	2.2	1
52	Perovskite photodetectors for flexible electronics: Recent advances and perspectives. <i>Applied Materials Today</i> , 2022 , 28, 101509	6.6	1
51	Ultrasmall Polymer Nanoparticles Formed by Instantaneous Nanosplitting of Surfactant-Free Emulsion. <i>Langmuir</i> , 2020 , 36, 7933-7942	4	О
50	Syntheses, structures, and properties of four coordination polymers based on 2,7-di(pyridin-4-yl)-9H-fluoren-9-one. <i>Applied Organometallic Chemistry</i> , 2020 , 34, e5477	3.1	O

49	Synthesis of Water-Soluble Iridium (III)-Containing Nanoparticles for Biological Applications. Journal of Chemistry, 2015 , 2015, 1-7	2.3	0
48	Semiconducting polymer dots with phosphorescent Ir(III)-complex for photodynamic cancer therapy. <i>Journal of Controlled Release</i> , 2015 , 213, e43	11.7	O
47	Deterministic and Scalable Generation of Exciton Emitters in 2D Semiconductor Nanodisks. <i>Advanced Optical Materials</i> ,2102702	8.1	O
46	Confining Carboxylized Carbon Nanotube for Phosphorescence Afterglow with Optical Memory Plasticity. <i>Advanced Optical Materials</i> ,2102323	8.1	Ο
45	Spiro-based diamond-type nanogrids (DGs) two ways: 'AB'/'A + B' type gridization of vertical spiro-based fluorenol synthons. <i>Organic and Biomolecular Chemistry</i> , 2021 , 19, 10408-10416	3.9	0
44	Research Progress of Hole Transport Materials Based on Spiro Aromatic-Skeleton in Perovskite Solar Cells. <i>Acta Chimica Sinica</i> , 2021 , 79, 1181	3.3	Ο
43	An all-in-one nanoplatform with near-infrared light promoted on-demand oxygen release and deep intratumoral penetration for synergistic photothermal/photodynamic therapy. <i>Journal of Colloid and Interface Science</i> , 2021 , 608, 1543-1552	9.3	О
42	Unique ssDNA-Induced Fluorescence Enhancement of a Conjugated Polymer Brush for Label-Free Sensing of S1 Nuclease and ATP. <i>IEEE Sensors Journal</i> , 2020 , 20, 6920-6927	4	O
41	Insights into the hole transport properties of LiTFSI-doped spiro-OMeTAD films through impedance spectroscopy. <i>Journal of Applied Physics</i> , 2020 , 128, 085501	2.5	O
40	The Effect of Shallow Trap Density on the Electrical Characteristics of an Organic Nonvolatile Memory Device Based on Eight-Hydroxyquinoline. <i>IEEE Transactions on Electron Devices</i> , 2021 , 68, 1235	-7241	O
39	Origin of Intramolecular Low-Threshold Amplified Spontaneous Emission. <i>Advanced Optical Materials</i> , 2021 , 9, 2001956	8.1	0
38	Frequency-Upconverted Stimulated Emission by Up to Six-Photon Excitation from Highly Extended Spiro-Fused Ladder-Type Oligo(p-phenylene)s. <i>Angewandte Chemie</i> , 2021 , 133, 10095-10103	3.6	O
37	Application of Nanoscale Zwitterionic Polyelectrolytes Brush with High Stability and Quantum Yield in Aqueous Solution for Cell Imaging. <i>Journal of Chemistry</i> , 2020 , 2020, 1-13	2.3	0
36	Supramolecular Non-Helical One-Dimensional Channels and Microtubes Assembled from Enantiomers of Difluorenol. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 3979-3983	16.4	Ο
35	Asymmetric Carbene-Catalyzed Oxidation of Functionalized Aldimines as 1,4-Dipoles. <i>Angewandte Chemie</i> , 2021 , 133, 7992-7998	3.6	0
34	Constructing Donor-Resonance-Donor Molecules for Acceptor-Free Bipolar Organic Semiconductors. <i>Research</i> , 2021 , 2021, 1-10	7.8	O
33	A phase separation strategy for precisely controllable writing voltage of polymer flash memory. <i>Applied Surface Science</i> , 2021 , 558, 149864	6.7	0
32	Highly Efficient Inverted Organic Light-Emitting Diodes Adopting a Self-Assembled Modification Layer. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 41818-41825	9.5	O

31	Lateral current suppression in tandem organic light-emitting diodes by adopting a buffer layer. <i>Organic Electronics</i> , 2021 , 100, 106353	3.5	O
30	V-shaped triazine host featuring intramolecular non-covalent interaction for highly efficient white electroluminescent devices. <i>Chemical Engineering Journal</i> , 2021 , 425, 131487	14.7	O
29	Tuning crystal orientation and charge transport of quasi-2D perovskites via halogen-substituted benzylammonium for efficient solar cells. <i>Journal of Energy Chemistry</i> , 2022 , 66, 205-209	12	0
28	Molecular conformational transition of chiral conjugated enantiomers dominated by Wallach's rule. Journal of Materials Chemistry C, 2021 , 9, 6991-6995	7.1	O
27	Organic molecular crystal with a high ultra-deep-blue emission efficiency of ~85% for low-threshold laser. <i>Dyes and Pigments</i> , 2022 , 110425	4.6	O
26	Dual/Multi-responsive fluorogenic probes for multiple analytes in mitochondria: From design to applications. <i>TrAC - Trends in Analytical Chemistry</i> , 2022 , 116697	14.6	O
25	Substituent effects on fluorene-based linear supramolecular polymerizsation. <i>Supramolecular Chemistry</i> , 2019 , 31, 391-401	1.8	
24	Simultaneous and Significant Improvements in Efficiency and Stability of Deep-Blue Organic Light Emitting Diodes through Friedel-Crafts Arylmethylation of a Fluorophore. <i>ChemPhotoChem</i> , 2020 , 4, 318-318	3.3	
23	The influence of Ca doping in Bi2O2Se: A first-principles investigation. <i>Computational Materials Science</i> , 2020 , 179, 109684	3.2	
22	High-Efficiency Polymer Solar Cells with Sm/Ca Bilayer Cathode Buffer. <i>Journal of Nanoscience and Nanotechnology</i> , 2017 , 17, 1171-177	1.3	
21	Surface-Oxidation-Controlled Synthesis of Blue Fluorescence Wavelength-Tunable Mini-Size Carbon Nitride Nanosheet and Its Application. <i>ChemistrySelect</i> , 2018 , 3, 2229-2234	1.8	
20	Water-Soluble Conjugated Polymers for Sensing and Imaging Applications 2018 , 171-213		
19	Effects of Weak Hydrogen-Bonding Interactions on Supramolecular Assemblies of N,N-Dimethyl-1-admantylamine. <i>Journal of Chemical Crystallography</i> , 2018 , 48, 54-63	0.5	
18	The dynamical admittance spectrometer: Instrument development and its application to chemical kinetics. <i>Measurement: Journal of the International Measurement Confederation</i> , 2016 , 87, 176-184	4.6	
17	Graphene Biodevices 2016 , 57-70		
16	Solvation effects on the ground and excited states of pl diblock-conjugated polymers: Theoretical insights. <i>High Performance Polymers</i> , 2014 , 26, 867-873	1.6	
15	High-Efficiency Bottom-Emitting Organic Light-Emitting Diodes with Double Aluminum as Electrodes. <i>Chinese Physics Letters</i> , 2015 , 32, 108501	1.8	
14	Study of Photoluminescence Excitation Spectra of Tris(8-hydroxyquinoline)aluminum(III) (Alq3) in Solutions and Films. <i>Israel Journal of Chemistry</i> , 2014 , 54, 927-930	3.4	

13	Synthesis, Characterization and Crystal Structure of a New One-Dimensional Heterobimetallic Coordination Polymer Based on [(Tp)Fe(CN)3][] <i>Journal of Chemical Crystallography</i> , 2011 , 41, 737-741	0.5
12	He I and He II photoelectron spectra of 2(3H)-furanone and 5-methyl-2(3H)-furanone. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 1998 , 94, 1-5	1.7
11	The colour-tuning effect of 2,9-dimethyl-4,7-diphenyl-1, 10-phenanthroline in bluefed organic light-emitting devices. <i>Journal Physics D: Applied Physics</i> , 2007 , 40, 4442-4446	3
10	High efficient upconversion luminescence of NaGdF4: Yb3+/Er3+ nanoparticle: first-principles calculation, dual-wavelength stimuli and logic gate application. <i>Materials Technology</i> ,1-10	2.1
9	Luminescent Conjugated Polymer Dots for Biomedical Applications 2021 , 197-230	
8	Perovskite light-emitting diodes based on n-type nanocrystalline silicon oxide electron injection layer. Wuli Xuebao/Acta Physica Sinica, 2019 , 68, 128103	0.6
7	Multiple-input multiple-output visible light communication system based on disorder dispersion components. <i>Optical Engineering</i> , 2017 , 56, 1	1.1
6	SYNTHESIS AND CHARACTERIZATION OF A PHOTO-CROSSLINKABLE BLUE LIGHT-EMITTING POLYFLUORENE. <i>Acta Polymerica Sinica</i> , 2010 , 006, 1029-1032	
5	Stereoisomer-Independent Stable Blue Emission in Axial Chiral Difluorenol. <i>Frontiers in Chemistry</i> , 2021 , 9, 717892	5
4	A zwitterionic red-emitting water-soluble conjugated polymer with high resistance to nonspecific binding for two-photon cell imaging and good singlet oxygen production capability. <i>New Journal of Chemistry</i> , 2021 , 45, 15607-15617	3.6
3	Hierarchical Nanowire Architectures Self-Assembled from Ultra-Deep-Blue Fluorene-Based Conjugated Molecules toward Organic Light-Emitting Diodes with CIE y $=$ 0.06. Advanced Optical Materials, 2102264	8.1
2	Ambipolar transport of polymer semiconductors in diodes and carrier segment vibration relaxation to the negative slope phenomena. <i>Polymer</i> , 2022 , 245, 124700	3.9

Photopolymerisable liquid crystals for additive manufacturing. *Additive Manufacturing*, **2022**, 55, 1028616.1