List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9590838/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Platinum single-atom catalyst with self-adjustable valence state for large-current-density acidic water oxidation. EScience, 2022, 2, 102-109.	41.6	106
2	Recent Advances in Dualâ€Atom Site Catalysts for Efficient Oxygen and Carbon Dioxide Electrocatalysis. Small Methods, 2022, 6, .	8.6	36
3	Synergetic Dualâ€lon Centers Boosting Metal Organic Framework Alloy Catalysts toward Efficient Two Electron Oxygen Reduction. Small, 2022, 18, .	10.0	17
4	Boosting the Kinetics and Stability of Zn Anodes in Aqueous Electrolytes with Supramolecular Cyclodextrin Additives. Journal of the American Chemical Society, 2022, 144, 11129-11137.	13.7	196
5	Valence-modified selenospinels as ampere-current-bearing oxygen evolution catalysts. Applied Catalysis B: Environmental, 2022, 316, 121649.	20.2	9
6	Tracking the Oxygen Dynamics of Solid–Liquid Electrochemical Interfaces by Correlative In Situ Synchrotron Spectroscopies. Accounts of Chemical Research, 2022, 55, 1949-1959.	15.6	29
7	Symbiotic synergy enabling moderate oxo-hydroxy adsorption capacity for high-selectivity oxygen reduction. Nano Energy, 2022, 101, 107587.	16.0	6
8	Dissecting π-conjugated covalent-coupling over conductive MOFs toward efficient two-electron oxygen reduction. Applied Catalysis B: Environmental, 2022, 317, 121706.	20.2	15
9	Self-synergistic cobalt catalysts with symbiotic metal single-atoms and nanoparticles for efficient oxygen reduction. Journal of Materials Chemistry A, 2021, 9, 1127-1133.	10.3	21
10	Unveiling the Electrooxidation of Urea: Intramolecular Coupling of the Nâ^'N Bond. Angewandte Chemie, 2021, 133, 7373-7383.	2.0	24
11	Unveiling the Electrooxidation of Urea: Intramolecular Coupling of the Nâ^'N Bond. Angewandte Chemie - International Edition, 2021, 60, 7297-7307.	13.8	204
12	High mass-specific reactivity of a defect-enriched Ru electrocatalyst for hydrogen evolution in harsh alkaline and acidic media. Science China Materials, 2021, 64, 2467-2476.	6.3	16
13	Electrochemical activation of C–H by electron-deficient W2C nanocrystals for simultaneous alkoxylation and hydrogen evolution. Nature Communications, 2021, 12, 3882.	12.8	24
14	Identification of the Evolving Dynamics of Coordination-Unsaturated Iron Atomic Active Sites under Reaction Conditions. ACS Energy Letters, 2021, 6, 3359-3366.	17.4	49
15	Self-Nanocavity-Confined Halogen Anions Boosting the High Selectivity of the Two-Electron Oxygen Reduction Pathway over Ni-Based MOFs. Journal of Physical Chemistry Letters, 2021, 12, 8706-8712.	4.6	19
16	Nickel ferrocyanide as a high-performance urea oxidation electrocatalyst. Nature Energy, 2021, 6, 904-912.	39.5	305
17	In Situ Construction of Flexible Vï£;Ni Redox Centers over Niâ€Based MOF Nanosheet Arrays for Electrochemical Water Oxidation. Small Methods, 2021, 5, e2100573.	8.6	28
18	Reduced interfacial tension on ultrathin NiCr-LDH nanosheet arrays for efficient electrocatalytic water oxidation. Journal of Materials Chemistry A, 2021, 9, 16706-16712.	10.3	18

#	Article	IF	CITATIONS
19	In-situ spectroscopic observation of dynamic-coupling oxygen on atomically dispersed iridium electrocatalyst for acidic water oxidation. Nature Communications, 2021, 12, 6118.	12.8	115
20	Dynamic CoRu Bond Shrinkage at Atomically Dispersed Ru Sites for Alkaline Hydrogen Evolution Reaction. Small, 2021, 17, e2105231.	10.0	23
21	Operando infrared spectroscopic insights into the dynamic evolution of liquid-solid (photo)electrochemical interfaces. Nano Energy, 2020, 77, 105121.	16.0	45
22	Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nature Chemistry, 2020, 12, 717-724.	13.6	485
23	Dynamic Evolution of Solid–Liquid Electrochemical Interfaces over Single-Atom Active Sites. Journal of the American Chemical Society, 2020, 142, 12306-12313.	13.7	124
24	Co–Ni Nanoalloy–Organic Framework Electrocatalysts with Ultrahigh Electron Transfer Kinetics for Efficient Oxygen Reduction. ACS Sustainable Chemistry and Engineering, 2020, 8, 6898-6904.	6.7	16
25	Hetero-N-Coordinated Co Single Sites with High Turnover Frequency for Efficient Electrocatalytic Oxygen Evolution in an Acidic Medium. ACS Energy Letters, 2019, 4, 1816-1822.	17.4	92
26	Donutlike RuCu Nanoalloy with Ultrahigh Mass Activity for Efficient and Robust Oxygen Evolution in Acid Solution. ACS Applied Energy Materials, 2019, 2, 7483-7489.	5.1	23
27	Subnano Amorphous Fe-Based Clusters with High Mass Activity for Efficient Electrocatalytic Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2019, 11, 41432-41439.	8.0	18
28	Operando Insight into the Oxygen Evolution Kinetics on the Metal-Free Carbon-Based Electrocatalyst in an Acidic Solution. ACS Applied Materials & Interfaces, 2019, 11, 34854-34861.	8.0	37
29	An on-demand solar hydrogen-evolution system for unassisted high-efficiency pure-water splitting. Journal of Materials Chemistry A, 2019, 7, 17315-17323.	10.3	17
30	Heterogeneous single-site synergetic catalysis for spontaneous photocatalytic overall water splitting. Journal of Materials Chemistry A, 2019, 7, 11170-11176.	10.3	22
31	Lattice-strained metal–organic-framework arrays for bifunctional oxygen electrocatalysis. Nature Energy, 2019, 4, 115-122.	39.5	680
32	Confined organometallic Au1N single-site as an efficient bifunctional oxygen electrocatalyst. Nano Energy, 2018, 46, 110-116.	16.0	77
33	A metal-vacancy-solid-solution NiAlP nanowall array bifunctional electrocatalyst for exceptional all-pH overall water splitting. Journal of Materials Chemistry A, 2018, 6, 9420-9427.	10.3	74
34	Valence Band Engineering via Pt ^{II} Single-Atom Confinement Realizing Photocatalytic Water Splitting. Journal of Physical Chemistry C, 2018, 122, 21108-21114.	3.1	51
35	Fast Photoelectron Transfer in (C _{ring})–C ₃ N ₄ Plane Heterostructural Nanosheets for Overall Water Splitting. Journal of the American Chemical Society, 2017, 139, 3021-3026.	13.7	640
36	Electron Delocalization Boosting Highly Efficient Electrocatalytic Water Oxidation in Layered Hydrotalcites. Journal of Physical Chemistry C, 2017, 121, 21962-21968.	3.1	25

#	Article	IF	CITATIONS
37	Strong Surface Hydrophilicity in Co-Based Electrocatalysts for Water Oxidation. ACS Applied Materials & Interfaces, 2017, 9, 26867-26873.	8.0	57
38	Synergetic enhancement of plasmonic hot-electron injection in Au cluster-nanoparticle/C ₃ N ₄ for photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2017, 5, 19649-19655.	10.3	61