Ranran Wang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9590701/ranran-wang-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

11	265	8	12
papers	citations	h-index	g-index
12	349 ext. citations	8.9	3.27
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
11	Delivery of miR-320a-3p by gold nanoparticles combined with photothermal therapy for directly targeting Sp1 in lung cancer. <i>Biomaterials Science</i> , 2021 , 9, 6528-6541	7.4	4
10	RFWD2 Knockdown as a Blocker to Reverse the Oncogenic Role of TRIB2 in Lung Adenocarcinoma. <i>Frontiers in Oncology</i> , 2021 , 11, 733175	5.3	0
9	MnO nanoflowers as a multifunctional nano-platform for enhanced photothermal/photodynamic therapy and MR imaging. <i>Biomaterials Science</i> , 2021 , 9, 3662-3674	7.4	12
8	A flexible bowl-shaped magnetic assembly for multifunctional gene delivery systems. <i>Nanoscale</i> , 2019 , 11, 16463-16475	7.7	8
7	Calcium carbonate-methylene blue nanohybrids for photodynamic therapy and ultrasound imaging. <i>Science China Life Sciences</i> , 2018 , 61, 483-491	8.5	13
6	Self-destructible polysaccharide nanocomposites with unlockable Au nanorods for high-performance photothermal therapy. <i>NPG Asia Materials</i> , 2018 , 10, 509-521	10.3	17
5	Hollow Nanostars with Photothermal Gold Caps and Their Controlled Surface Functionalization for Complementary Therapies. <i>Advanced Functional Materials</i> , 2017 , 27, 1700256	15.6	19
4	One-pot synthesis of nanoscale carbon dots-embedded metalBrganic frameworks at room temperature for enhanced chemical sensing. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 15880-15887	13	87
3	Hierarchical Nanohybrids of Gold Nanorods and PGMA-Based Polycations for Multifunctional Theranostics. <i>Advanced Functional Materials</i> , 2016 , 26, 5848-5861	15.6	49
2	Well-Defined Peapod-like Magnetic Nanoparticles and Their Controlled Modification for Effective Imaging Guided Gene Therapy. <i>ACS Applied Materials & Description of the Effective Materials & Descriptio</i>	9.5	39
1	Versatile functionalization of amylopectin for effective biomedical applications. <i>Science China Chemistry</i> , 2015 , 58, 1461-1470	7.9	17