Yan Meng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9590442/publications.pdf

Version: 2024-02-01

33	1,374	16	34
papers	citations	h-index	g-index
36	36	36	1848
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Understanding the inter-site distance effect in single-atom catalysts for oxygen electroreduction. Nature Catalysis, 2021, 4, 615-622.	34.4	336
2	Nitrogen-rich porous carbon derived from biomass as a high performance anode material for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 6534-6541.	10.3	305
3	Hierarchically porous nitrogen-rich carbon derived from wheat straw as an ultra-high-rate anode for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 9684-9690.	10.3	216
4	Pumpkinâ€Derived Porous Carbon for Supercapacitors with High Performance. Chemistry - an Asian Journal, 2016, 11, 1828-1836.	3.3	56
5	Target-catalyzed autonomous assembly of dendrimer-like DNA nanostructures for enzyme-free and signal amplified colorimetric nucleic acids detection. Biosensors and Bioelectronics, 2016, 86, 985-989.	10.1	51
6	Flame-Retardant Bilayer Separator with Multifaceted van der Waals Interaction for Lithium-lon Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 26402-26411.	8.0	40
7	Unusual sequence length-dependent gold nanoparticles aggregation of the ssDNA sticky end and its application for enzyme-free and signal amplified colorimetric DNA detection. Scientific Reports, 2016, 6, 30878.	3.3	31
8	Self-assembly of DNA nanoparticles through multiple catalyzed hairpin assembly for enzyme-free nucleic acid amplified detection. Talanta, 2018, 179, 641-645.	5.5	28
9	High lithium and sodium anodic performance of nitrogen-rich ordered mesoporous carbon derived from alfalfa leaves by a ball-milling assisted template method. Journal of Materials Chemistry A, 2016, 4, 17491-17502.	10.3	27
10	Oxygen framework reconstruction by LiAlH4 treatment enabling stable cycling of high-voltage LiCoO2. Energy Storage Materials, 2022, 44, 487-496.	18.0	27
11	Tri-metallic phytate in situ electrodeposited on 3D Ni foam as a highly efficient electrocatalyst for enhanced overall water splitting. Journal of Materials Chemistry A, 2017, 5, 18786-18792.	10.3	24
12	High-crystallinity and high-rate Prussian Blue analogues synthesized at the oil–water interface. Inorganic Chemistry Frontiers, 2021, 8, 2008-2016.	6.0	22
13	Sodium storage in fluorine-rich mesoporous carbon fabricated by low-temperature carbonization of polyvinylidene fluoride with a silica template. RSC Advances, 2016, 6, 110850-110857.	3.6	20
14	Facile synthesis of phosphorus-doped carbon under tuned temperature with high lithium and sodium anodic performances. Journal of Colloid and Interface Science, 2019, 551, 61-71.	9.4	20
15	Nitrogen/oxygen codoped hierarchical porous Carbons/Selenium cathode with excellent lithium and sodium storage behavior. Journal of Colloid and Interface Science, 2022, 608, 265-274.	9.4	20
16	Sodium Carboxymethylcellulose Derived Oxygenâ€Rich Porous Carbon Anodes for Highâ€Performance Lithium/Sodiumâ€lon Batteries. ChemElectroChem, 2017, 4, 500-507.	3.4	19
17	A phytic acid derived LiMn0.5Fe0.5PO4/Carbon composite of high energy density for lithium rechargeable batteries. Scientific Reports, 2019, 9, 6665.	3.3	17
18	Obtaining P2â€Na _{0.56} [Ni _{0.1} Co _{0.1} Mn _{0.8}]O ₂ Cathode Materials for Sodiumâ€Ion Batteries by using a Coâ€precipitation Method. ChemElectroChem, 2018, 5, 3229-3235.	3.4	15

#	Article	IF	CITATIONS
19	Trifunctional Electrolyte Additive Hexadecyltrioctylammonium Iodide for Lithium–Sulfur Batteries with Extended Cycle Life. ACS Applied Materials & Interfaces, 2021, 13, 16545-16557.	8.0	14
20	Porous nitrogen-doped carbon tubes derived from reed catkins as a high-performance anode for lithium ion batteries. RSC Advances, 2016, 6, 98434-98439.	3.6	12
21	An iron foam acts as a substrate and iron source for the <i>in situ</i> construction of a robust transition metal phytate electrocatalyst for overall water splitting. Sustainable Energy and Fuels, 2020, 4, 331-336.	4.9	11
22	The fluorination-assisted dealloying synthesis of porous reduced graphene oxide-FeF ₂ @carbon for high-performance lithium-ion battery and the exploration of its electrochemical mechanism. Inorganic Chemistry Frontiers, 2021, 8, 3273-3283.	6.0	10
23	Lithium cobalt phosphate electrode for the simultaneous determination of ascorbic acid, dopamine, and serum uric acid by differential pulse voltammetry. Mikrochimica Acta, 2021, 188, 190.	5.0	8
24	Polyporous PVDF/TiO ₂ photocatalytic composites for photocatalyst fixation, recycle, and repair. Journal of the American Ceramic Society, 2021, 104, 6290-6298.	3.8	8
25	Threeâ€Dimensional Nanocomposite of Ironâ€Based Fluoride Loaded in Nâ€Doped Porous Carbon as a Highâ€Performance Cathode for Rechargeable Liâ€ion Batteries. ChemElectroChem, 2017, 4, 1856-1862.	3.4	7
26	Investigation of the LiBH ₄ Modification Effect on Cycling Stability and High-Rate Capacity of LiCoO ₂ Cathodes. ACS Applied Energy Materials, 2021, 4, 6933-6941.	5.1	7
27	Three-dimensional iron oxyfluoride/N-doped carbon hybrid nanocomposites as high-performance cathodes for rechargeable Li-ion batteries. Inorganic Chemistry Frontiers, 2019, 6, 465-472.	6.0	6
28	LiFePO4-covered silicon composite cathode with additional Li storage for lithium-ion batteries. Ionics, 2021, 27, 4983-4993.	2.4	4
29	Nano-LiFePO ₄ /C Derived from Gaseous-Oxidation Engineering-Synthesized Amorphous Mesoporous nano-FePO ₄ for High-Rate Li-lon Batteries. Industrial & Description (Section 2014) (Section 2014) (Section 2014) (Page 14) (Section 2014) (Page 2	3.7	4
30	Sodium Carboxymethylcellulose Derived Oxygen-Rich Porous Carbon Anodes for High-Performance Lithium/Sodium-Ion Batteries. ChemElectroChem, 2017, 4, 458-458.	3.4	3
31	Synchronous Multi-sits Determination of H2O2 in Vertical Water Based on Phosphor TiO2/SiO2 Nanocomposite. Analytical Sciences, 2016, 32, 775-780.	1.6	2
32	The unique physical shading pattern of Rayleigh scattering for the generally improved detection of scattering particles. Analyst, The, 2022, 147, 2361-2368.	3 . 5	2
33	Improved Electrochemiluminescence Behavior of Glassy Carbon Electrode Through Inâ€Situ Chemical Bonding Modification. ChemElectroChem, 2019, 6, 1878-1883.	3.4	1