
John G Conboy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9589577/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unannotated splicing regulatory elements in deep intron space. Wiley Interdisciplinary Reviews RNA, 2021, 12, e1656.	6.4	11
2	A Deep Exon Cryptic Splice Site Promotes Aberrant Intron Retention in a Von Willebrand Disease Patient. International Journal of Molecular Sciences, 2021, 22, 13248.	4.1	3
3	Selective effects of protein 4.1N deficiency on neuroendocrine and reproductive systems. Scientific Reports, 2020, 10, 16947.	3.3	1
4	Antisense targeting of decoy exons can reduce intron retention and increase protein expression in human erythroblasts. Rna, 2020, 26, 996-1005.	3.5	8
5	An important class of intron retention events in human erythroblasts is regulated by cryptic exons proposed to function as splicing decoys. Rna, 2018, 24, 1255-1265.	3.5	27
6	RNA splicing during terminal erythropoiesis. Current Opinion in Hematology, 2017, 24, 215-221.	2.5	11
7	Circulating primitive erythroblasts establish a functional, protein 4.1R-dependent cytoskeletal network prior to enucleating. Scientific Reports, 2017, 7, 5164.	3.3	13
8	Developmental regulation of <scp>RNA</scp> processing by Rbfox proteins. Wiley Interdisciplinary Reviews RNA, 2017, 8, e1398.	6.4	105
9	A dynamic intron retention program enriched in RNA processing genes regulates gene expression during terminal erythropoiesis. Nucleic Acids Research, 2016, 44, 838-851.	14.5	162
10	A dynamic alternative splicing program regulates gene expression during terminal erythropoiesis. Nucleic Acids Research, 2014, 42, 4031-4042.	14.5	76
11	Rbfox proteins regulate alternative mRNA splicing through evolutionarily conserved RNA bridges. Nature Structural and Molecular Biology, 2013, 20, 1434-1442.	8.2	313
12	A Dynamic Alternative Splicing Program Regulates Gene Expression In A Differentiation Stage-Specific Manner During Terminal Erythropoiesis. Blood, 2013, 122, 3413-3413.	1.4	2
13	Deep Intron Elements Mediate Nested Splicing Events at Consecutive AG Dinucleotides To Regulate Alternative 3′ Splice Site Choice in Vertebrate 4.1 Genes. Molecular and Cellular Biology, 2012, 32, 2044-2053.	2.3	15
14	Abundance of Alternative Splicing Events and Differentiation Stage-Specific Changes in Splicing Suggest A Major Role in Regulation of Gene Expression During Late Erythropoiesis. Blood, 2012, 120, 978-978.	1.4	5
15	Rbfox-regulated alternative splicing is critical for zebrafish cardiac and skeletal muscle functions. Developmental Biology, 2011, 359, 251-261.	2.0	84
16	Efficient in Vivo Manipulation of Alternative Pre-mRNA Splicing Events Using Antisense Morpholinos in Mice. Journal of Biological Chemistry, 2011, 286, 6033-6039.	3.4	21
17	Comprehensive characterization of expression patterns of protein 4.1 family members in mouse adrenal gland: implications for functions. Histochemistry and Cell Biology, 2010, 134, 411-420.	1.7	15
18	Exon-Level Microarray Analyses Identify Alternative Splicing Programs in Breast Cancer. Molecular Cancer Research, 2010, 8, 961-974.	3.4	121

JOHN G CONBOY

#	Article	IF	CITATIONS
19	In Vivo Analysis of Erythroid Protein 4.1 Pre-mRNA Splicing Mechanisms: Use of Antisense Morpholinos to Assay Function of Deep Intron Regulatory Elements. Blood, 2010, 116, 815-815.	1.4	1
20	Splicing Mechanisms That Generate Distinct Isoforms of Protein 4.1R During Terminal Erythroid Differentiation Blood, 2009, 114, 4036-4036.	1.4	0
21	Intrasplicing coordinates alternative first exons with alternative splicing in the protein 4.1R gene. EMBO Journal, 2008, 27, 122-131.	7.8	29
22	Stage-Specific Switches in Alternative Pre-mRNA Splicing during Late Erythropoiesis Are Conserved from Mouse to Human. Blood, 2008, 112, 531-531.	1.4	0
23	A correlation with exon expression approach to identify cis-regulatory elements for tissue-specific alternative splicing. Nucleic Acids Research, 2007, 35, 4845-4857.	14.5	75
24	Modulation of Fox-Regulated Alternative Splicing Events during Erythropoiesis Blood, 2007, 110, 142-142.	1.4	8
25	Fox-2 Splicing Factor Binds to a Conserved Intron Motif to Promote Inclusion of Protein 4.1R Alternative Exon 16. Journal of Biological Chemistry, 2006, 281, 12468-12474.	3.4	102
26	Combinatorial Regulation of Protein 4.1R Exon 16 Alternative Splicing: Modulation of Fox-2 Activated Splicing by Other Intronic and Exonic Motifs Blood, 2006, 108, 540-540.	1.4	0
27	Mechanisms That Link Promoter Choice with Downstream Alternative Splicing in the Erythroid Protein 4.1R Gene Blood, 2006, 108, 1562-1562.	1.4	1
28	The splicing regulatory element, UGCAUG, is phylogenetically and spatially conserved in introns that flank tissue-specific alternative exons. Nucleic Acids Research, 2005, 33, 714-724.	14.5	92
29	Evolutionarily conserved coupling of transcription and alternative splicing in the EPB41 (protein 4.1R) and EPB41L3 (protein 4.1B) genes. Genomics, 2005, 86, 701-707.	2.9	11
30	Protein 4.1R Exon 16 Splicing Regulation by Antagonistic Activities of Fox-2 and hnRNP A1 Splicing Factors Blood, 2005, 106, 804-804.	1.4	1
31	Evolutionarily Conserved Coupling of Transcription and Alternative Splicing in the Protein 4.1R and 4.1B Genes Regulates N-Terminal Protein Structure Blood, 2005, 106, 1664-1664.	1.4	0
32	Putative tumor suppressor protein 4.1B is differentially expressed in kidney and brain via alternative promoters and 5′ alternative splicing. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2004, 1680, 71-82.	2.4	15
33	Differential domain evolution and complex RNA processing in a family of paralogous EPB41 (protein) Tj ETQq1	1 0.784314	rgBT /Over
34	An Intron Splicing Enhancer Element, UGCAUG, Is Evolutionarily Conserved near Erythroid Protein 4.1R Exon 16 and Other Tissue-Specific Alternative Exons Blood, 2004, 104, 1584-1584.	1.4	1
35	Distinct distribution of specific members of protein 4.1 gene family in the mouse nephron. Kidney International, 2003, 63, 1321-1337.	5.2	50
36	Alternative 5′ exons and differential splicing regulate expression of protein 4.1R isoforms with distinct N-termini. Blood, 2003, 101, 4164-4171.	1.4	30

John G Conboy

#	Article	IF	CITATIONS
37	Decrease in hnRNP A/B expression during erythropoiesis mediates a pre-mRNA splicing switch. EMBO Journal, 2002, 21, 6195-6204.	7.8	63
38	Molecular and Functional Characterization of Protein 4.1B, a Novel Member of the Protein 4.1 Family with High Level, Focal Expression in Brain. Journal of Biological Chemistry, 2000, 275, 3247-3255.	3.4	114
39	A Novel Neuron-Enriched Homolog of the Erythrocyte Membrane Cytoskeletal Protein 4.1. Journal of Neuroscience, 1999, 19, 6457-6467.	3.6	132
40	Deciphering the Nuclear Import Pathway for the Cytoskeletal Red Cell Protein 4.1R. Molecular Biology of the Cell, 1999, 10, 1783-1798.	2.1	40
41	The Role of Alternative Preâ€mRNA Splicing in Regulating the Structure and Function of Skeletal Protein 4.1. Proceedings of the Society for Experimental Biology and Medicine, 1999, 220, 73-78.	1.8	38
42	Protein 4.1R–deficient mice are viable but have erythroid membrane skeleton abnormalities. Journal of Clinical Investigation, 1999, 103, 331-340.	8.2	107
43	Neurobehavioral deficits in mice lacking the erythrocyte membrane cytoskeletal protein 4.1. Current Biology, 1998, 8, 1269-S1.	3.9	47
44	Four Paralogous Protein 4.1 Genes Map to Distinct Chromosomes in Mouse and Human. Genomics, 1998, 54, 348-350.	2.9	54
45	The 13-kD FK506 Binding Protein, FKBP13, Interacts with a Novel Homologue of the Erythrocyte Membrane Cytoskeletal Protein 4.1. Journal of Cell Biology, 1998, 141, 143-153.	5.2	122
46	Cell Shape-dependent Regulation of Protein 4.1 Alternative Pre-mRNA Splicing in Mammary Epithelial Cells. Journal of Biological Chemistry, 1997, 272, 10254-10259.	3.4	45