
John G Conboy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9589577/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Rbfox proteins regulate alternative mRNA splicing through evolutionarily conserved RNA bridges. Nature Structural and Molecular Biology, 2013, 20, 1434-1442.	8.2	313
2	A dynamic intron retention program enriched in RNA processing genes regulates gene expression during terminal erythropoiesis. Nucleic Acids Research, 2016, 44, 838-851.	14.5	162
3	A Novel Neuron-Enriched Homolog of the Erythrocyte Membrane Cytoskeletal Protein 4.1. Journal of Neuroscience, 1999, 19, 6457-6467.	3.6	132
4	The 13-kD FK506 Binding Protein, FKBP13, Interacts with a Novel Homologue of the Erythrocyte Membrane Cytoskeletal Protein 4.1. Journal of Cell Biology, 1998, 141, 143-153.	5.2	122
5	Exon-Level Microarray Analyses Identify Alternative Splicing Programs in Breast Cancer. Molecular Cancer Research, 2010, 8, 961-974.	3.4	121
6	Molecular and Functional Characterization of Protein 4.1B, a Novel Member of the Protein 4.1 Family with High Level, Focal Expression in Brain. Journal of Biological Chemistry, 2000, 275, 3247-3255.	3.4	114
7	Protein 4.1R–deficient mice are viable but have erythroid membrane skeleton abnormalities. Journal of Clinical Investigation, 1999, 103, 331-340.	8.2	107
8	Developmental regulation of <scp>RNA</scp> processing by Rbfox proteins. Wiley Interdisciplinary Reviews RNA, 2017, 8, e1398.	6.4	105
9	Fox-2 Splicing Factor Binds to a Conserved Intron Motif to Promote Inclusion of Protein 4.1R Alternative Exon 16. Journal of Biological Chemistry, 2006, 281, 12468-12474.	3.4	102
10	The splicing regulatory element, UGCAUG, is phylogenetically and spatially conserved in introns that flank tissue-specific alternative exons. Nucleic Acids Research, 2005, 33, 714-724.	14.5	92
11	Rbfox-regulated alternative splicing is critical for zebrafish cardiac and skeletal muscle functions. Developmental Biology, 2011, 359, 251-261.	2.0	84
12	A dynamic alternative splicing program regulates gene expression during terminal erythropoiesis. Nucleic Acids Research, 2014, 42, 4031-4042.	14.5	76
13	A correlation with exon expression approach to identify cis-regulatory elements for tissue-specific alternative splicing. Nucleic Acids Research, 2007, 35, 4845-4857.	14.5	75
14	Decrease in hnRNP A/B expression during erythropoiesis mediates a pre-mRNA splicing switch. EMBO Journal, 2002, 21, 6195-6204.	7.8	63
15	Four Paralogous Protein 4.1 Genes Map to Distinct Chromosomes in Mouse and Human. Genomics, 1998, 54, 348-350.	2.9	54
16	Distinct distribution of specific members of protein 4.1 gene family in the mouse nephron. Kidney International, 2003, 63, 1321-1337.	5.2	50
17	Neurobehavioral deficits in mice lacking the erythrocyte membrane cytoskeletal protein 4.1. Current Biology, 1998, 8, 1269-S1.	3.9	47
18	Cell Shape-dependent Regulation of Protein 4.1 Alternative Pre-mRNA Splicing in Mammary Epithelial Cells. Journal of Biological Chemistry, 1997, 272, 10254-10259.	3.4	45

JOHN G CONBOY

#	Article	IF	CITATIONS
19	Deciphering the Nuclear Import Pathway for the Cytoskeletal Red Cell Protein 4.1R. Molecular Biology of the Cell, 1999, 10, 1783-1798.	2.1	40
20	The Role of Alternative Preâ€mRNA Splicing in Regulating the Structure and Function of Skeletal Protein 4.1. Proceedings of the Society for Experimental Biology and Medicine, 1999, 220, 73-78.	1.8	38
21	Differential domain evolution and complex RNA processing in a family of paralogous EPB41 (protein) Tj ETQq1 1	0.784314 2.9	rgBT /Overlo
22	Alternative 5′ exons and differential splicing regulate expression of protein 4.1R isoforms with distinct N-termini. Blood, 2003, 101, 4164-4171.	1.4	30
23	Intrasplicing coordinates alternative first exons with alternative splicing in the protein 4.1R gene. EMBO Journal, 2008, 27, 122-131.	7.8	29
24	An important class of intron retention events in human erythroblasts is regulated by cryptic exons proposed to function as splicing decoys. Rna, 2018, 24, 1255-1265.	3.5	27
25	Efficient in Vivo Manipulation of Alternative Pre-mRNA Splicing Events Using Antisense Morpholinos in Mice. Journal of Biological Chemistry, 2011, 286, 6033-6039.	3.4	21
26	Putative tumor suppressor protein 4.1B is differentially expressed in kidney and brain via alternative promoters and 5′ alternative splicing. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2004, 1680, 71-82.	2.4	15
27	Comprehensive characterization of expression patterns of protein 4.1 family members in mouse adrenal gland: implications for functions. Histochemistry and Cell Biology, 2010, 134, 411-420.	1.7	15
28	Deep Intron Elements Mediate Nested Splicing Events at Consecutive AG Dinucleotides To Regulate Alternative 3′ Splice Site Choice in Vertebrate 4.1 Genes. Molecular and Cellular Biology, 2012, 32, 2044-2053.	2.3	15
29	Circulating primitive erythroblasts establish a functional, protein 4.1R-dependent cytoskeletal network prior to enucleating. Scientific Reports, 2017, 7, 5164.	3.3	13
30	Evolutionarily conserved coupling of transcription and alternative splicing in the EPB41 (protein 4.1R) and EPB41L3 (protein 4.1B) genes. Genomics, 2005, 86, 701-707.	2.9	11
31	RNA splicing during terminal erythropoiesis. Current Opinion in Hematology, 2017, 24, 215-221.	2.5	11
32	Unannotated splicing regulatory elements in deep intron space. Wiley Interdisciplinary Reviews RNA, 2021, 12, e1656.	6.4	11
33	Antisense targeting of decoy exons can reduce intron retention and increase protein expression in human erythroblasts. Rna, 2020, 26, 996-1005.	3.5	8
34	Modulation of Fox-Regulated Alternative Splicing Events during Erythropoiesis Blood, 2007, 110, 142-142.	1.4	8
35	Abundance of Alternative Splicing Events and Differentiation Stage-Specific Changes in Splicing Suggest A Major Role in Regulation of Gene Expression During Late Erythropoiesis. Blood, 2012, 120, 978-978.	1.4	5
36	A Deep Exon Cryptic Splice Site Promotes Aberrant Intron Retention in a Von Willebrand Disease Patient. International Journal of Molecular Sciences, 2021, 22, 13248.	4.1	3

John G Conboy

#	Article	IF	CITATIONS
37	A Dynamic Alternative Splicing Program Regulates Gene Expression In A Differentiation Stage-Specific Manner During Terminal Erythropoiesis. Blood, 2013, 122, 3413-3413.	1.4	2
38	Selective effects of protein 4.1N deficiency on neuroendocrine and reproductive systems. Scientific Reports, 2020, 10, 16947.	3.3	1
39	Protein 4.1R Exon 16 Splicing Regulation by Antagonistic Activities of Fox-2 and hnRNP A1 Splicing Factors Blood, 2005, 106, 804-804.	1.4	1
40	An Intron Splicing Enhancer Element, UGCAUG, Is Evolutionarily Conserved near Erythroid Protein 4.1R Exon 16 and Other Tissue-Specific Alternative Exons Blood, 2004, 104, 1584-1584.	1.4	1
41	Mechanisms That Link Promoter Choice with Downstream Alternative Splicing in the Erythroid Protein 4.1R Gene Blood, 2006, 108, 1562-1562.	1.4	1
42	In Vivo Analysis of Erythroid Protein 4.1 Pre-mRNA Splicing Mechanisms: Use of Antisense Morpholinos to Assay Function of Deep Intron Regulatory Elements. Blood, 2010, 116, 815-815.	1.4	1
43	Evolutionarily Conserved Coupling of Transcription and Alternative Splicing in the Protein 4.1R and 4.1B Genes Regulates N-Terminal Protein Structure Blood, 2005, 106, 1664-1664.	1.4	0
44	Combinatorial Regulation of Protein 4.1R Exon 16 Alternative Splicing: Modulation of Fox-2 Activated Splicing by Other Intronic and Exonic Motifs Blood, 2006, 108, 540-540.	1.4	0
45	Stage-Specific Switches in Alternative Pre-mRNA Splicing during Late Erythropoiesis Are Conserved from Mouse to Human. Blood, 2008, 112, 531-531.	1.4	0
46	Splicing Mechanisms That Generate Distinct Isoforms of Protein 4.1R During Terminal Erythroid Differentiation Blood, 2009, 114, 4036-4036.	1.4	0