Masoud Monjezi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9589373/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Blasting pattern optimization using gene expression programming and grasshopper optimization algorithm to minimise blast-induced ground vibrations. Engineering With Computers, 2022, 38, 3341-3350.	3.5	10
2	Prediction of blast-induced dust emissions in surface mines using integration of dimensional analysis and multivariate regression analysis. Arabian Journal of Geosciences, 2022, 15, 1.	0.6	15
3	Improved mine waste dump planning through integration of geochemical and mineralogical data and mixed integer programming: Reducing acid rock generation from mine waste. Journal of Environmental Management, 2022, 309, 114712.	3.8	13
4	Minimization of blast-induced dust emission using gene-expression programming and grasshopper optimization algorithm: a smart mining solution based on blasting plan optimization. Clean Technologies and Environmental Policy, 2022, 24, 2313-2328.	2.1	12
5	Six Novel Hybrid Extreme Learning Machine–Swarm Intelligence Optimization (ELM–SIO) Models for Predicting Backbreak in Open-Pit Blasting. Natural Resources Research, 2022, 31, 3017-3039.	2.2	32
6	Prediction and optimization of flyrock and oversize boulder induced by mine blasting using artificial intelligence techniques. Environmental Earth Sciences, 2022, 81, .	1.3	7
7	Mathematical modeling for optimized mine waste rock disposal: Establishing more effective acid rock drainage management. Journal of Cleaner Production, 2021, 288, 125124.	4.6	8
8	Optimization of prediction of flyrock using linear multivariate regression (LMR) and gene expression programming (GEP)—Topal Novin mine, Iran. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	12
9	Prediction of Dust Emission Due to Open Pit Mine Blasting Using a Hybrid Artificial Neural Network. Natural Resources Research, 2021, 30, 4773-4788.	2.2	26
10	Performance of Hybrid SCA-RF and HHO-RF Models for Predicting Backbreak in Open-Pit Mine Blasting Operations. Natural Resources Research, 2021, 30, 4753-4771.	2.2	40
11	Factors Influencing Pile Friction Bearing Capacity: Proposing a Novel Procedure Based on Gradient Boosted Tree Technique. Sustainability, 2021, 13, 11862.	1.6	15
12	Optimized Support Vector Machines Combined with Evolutionary Random Forest for Prediction of Back-Break Caused by Blasting Operation. Sustainability, 2021, 13, 12797.	1.6	18
13	Evaluation and Optimization of Prediction of Toe that Arises from Mine Blasting Operation Using Various Soft Computing Techniques. Natural Resources Research, 2020, 29, 887-903.	2.2	16
14	Development of a MIP model to maximize NPV and minimize adverse environmental impact—a heuristic approach. Environmental Monitoring and Assessment, 2020, 192, 605.	1.3	7
15	Optimization of blasting design in open pit limestone mines with the aim of reducing ground vibration using robust techniques. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2020, 6, 1.	1.3	23
16	Development of a Group Method of Data Handling Technique to Forecast Iron Ore Price. Applied Sciences (Switzerland), 2020, 10, 2364.	1.3	16
17	Artificial Neural Network and Firefly Algorithm for Estimation and Minimization of Ground Vibration Induced by Blasting in a Mine. Natural Resources Research, 2020, 29, 4121-4132.	2.2	32
18	The integrated optimization of underground stope layout designing and production scheduling incorporating a non-dominated sorting genetic algorithm (NSGA-II). Resources Policy, 2019, 63, 101408.	4.2	24

MASOUD MONJEZI

#	Article	IF	CITATIONS
19	An investigation of the relationship between muck geometry, TBM performance, and operational parameters: A case study in Golab II water transfer tunnel. Tunnelling and Underground Space Technology, 2019, 88, 73-86.	3.0	31
20	TBM performance estimation using a classification and regression tree (CART) technique. Bulletin of Engineering Geology and the Environment, 2018, 77, 429-440.	1.6	53
21	Uniaxial compressive strength prediction through a new technique based on gene expression programming. Neural Computing and Applications, 2018, 30, 3523-3532.	3.2	74
22	Optimization of flyrock and rock fragmentation in the Tajareh limestone mine using metaheuristics method of firefly algorithm. Engineering With Computers, 2018, 34, 241-251.	3.5	61
23	Evaluation of effect of rock mass properties on fragmentation using robust techniques. Engineering With Computers, 2018, 34, 253-260.	3.5	22
24	Development of GP and GEP models to estimate an environmental issue induced by blasting operation. Environmental Monitoring and Assessment, 2018, 190, 351.	1.3	61
25	An optimized ANN model based on genetic algorithm for predicting ripping production. Neural Computing and Applications, 2017, 28, 393-406.	3.2	85
26	Function development for appraising brittleness of intact rocks using genetic programming and non-linear multiple regression models. Engineering With Computers, 2017, 33, 13-21.	3.5	64
27	Classification and regressionÂtree technique in estimating peak particle velocity caused by blasting. Engineering With Computers, 2017, 33, 45-53.	3.5	66
28	Prediction and minimization of blast-induced ground vibration using two robust meta-heuristic algorithms. Engineering With Computers, 2017, 33, 835-851.	3.5	53
29	Roadheader performance prediction using genetic programming (GP) and gene expression programming (GEP) techniques. Environmental Earth Sciences, 2017, 76, 1.	1.3	33
30	Forecasting blast-induced ground vibration developing a CART model. Engineering With Computers, 2017, 33, 307-316.	3.5	134
31	Modification and prediction of blast-induced ground vibrations based on both empirical and computational techniques. Engineering With Computers, 2016, 32, 717-728.	3.5	58
32	Development of a new model for predicting flyrock distance in quarry blasting: a genetic programming technique. Bulletin of Engineering Geology and the Environment, 2016, 75, 993-1006.	1.6	62
33	Risk assessment and prediction of rock fragmentation produced by blasting operation: a rock engineering system. Environmental Earth Sciences, 2016, 75, 1.	1.3	77
34	Genetic programming and gene expression programming for flyrock assessment due to mine blasting. International Journal of Rock Mechanics and Minings Sciences, 2016, 88, 254-264.	2.6	92
35	Prediction of seismic slope stability through combination of particle swarm optimization and neural network. Engineering With Computers, 2016, 32, 85-97.	3.5	256
36	Prediction and optimization of back-break and rock fragmentation using an artificial neural network and a bee colony algorithm. Bulletin of Engineering Geology and the Environment, 2016, 75, 27-36.	1.6	151

MASOUD MONJEZI

#	Article	IF	CITATIONS
37	Prediction of the strength and elasticity modulus of granite through an expert artificial neural network. Arabian Journal of Geosciences, 2016, 9, 1.	0.6	136
38	Combination of neural network and ant colony optimization algorithms for prediction and optimization of flyrock and back-break induced by blasting. Engineering With Computers, 2016, 32, 255-266.	3.5	116
39	Genetic programing and non-linear multiple regression techniques to predict backbreak in blasting operation. Engineering With Computers, 2016, 32, 123-133.	3.5	84
40	Application of fuzzy inference system for prediction of rock fragmentation induced by blasting. Arabian Journal of Geosciences, 2015, 8, 10819-10832.	0.6	78
41	Application of two intelligent systems in predicting environmental impacts of quarry blasting. Arabian Journal of Geosciences, 2015, 8, 9647-9665.	0.6	103
42	Feasibility of indirect determination of blast induced ground vibration based on support vector machine. Measurement: Journal of the International Measurement Confederation, 2015, 75, 289-297.	2.5	229
43	Blast-induced air and ground vibration prediction: a particle swarm optimization-based artificial neural network approach. Environmental Earth Sciences, 2015, 74, 2799-2817.	1.3	162
44	Application of joint conditional simulation to uncertainty quantification and resource classification. Arabian Journal of Geosciences, 2015, 8, 455-463.	0.6	6
45	Application of neural networks to predict net present value in mining projects. Arabian Journal of Geosciences, 2014, 7, 1067-1072.	0.6	30
46	An intelligent approach to predict unconfined compressive strength of rock surrounding access tunnels in longwall coal mining. Neural Computing and Applications, 2014, 24, 233-241.	3.2	84
47	Application of soft computing in predicting rock fragmentation to reduce environmental blasting side effects. Arabian Journal of Geosciences, 2014, 7, 505-511.	0.6	33
48	Study of the influence of geotechnical parameters on the TBM performance in Tehran–Shomal highway project using ANN and SPSS. Arabian Journal of Geosciences, 2013, 6, 1215-1227.	0.6	50
49	Evaluation and prediction of blast-induced ground vibration at Shur River Dam, Iran, by artificial neural network. Neural Computing and Applications, 2013, 22, 1637-1643.	3.2	213
50	Selecting the most suitable blasting pattern using AHP-TOPSIS method: Sungun copper mine. Journal of Mining Science, 2013, 49, 967-975.	0.1	16
51	A comparative study between sequential Gaussian simulation and kriging method grade modeling in open-pit mining. Arabian Journal of Geosciences, 2013, 6, 123-128.	0.6	7
52	Evaluation of Blasting Patterns Using Operational Research Models / Ocena Planów Prac StrzaÅ,owych W Oparciu O Metody BadaÅ,, Operacyjnych. Archives of Mining Sciences, 2013, 58, 881-892.	0.6	5
53	Evaluation of flyrock phenomenon due to blasting operation by support vector machine. Neural Computing and Applications, 2012, 21, 2077-2085.	3.2	81
54	Application of neural networks for the prediction of rock fragmentation in Chadormalu iron mine / Zastosowanie sieci neuronowych do prognozowania stopnia rozdrobnienia skaÅ, w kopalni rud żelaza w Chadormalu. Archives of Mining Sciences, 2012, 57, 787-798.	0.6	3

MASOUD MONJEZI

#	Article	IF	CITATIONS
55	Burden prediction in blasting operation using rock geomechanical properties. Arabian Journal of Geosciences, 2012, 5, 1031-1037.	0.6	34
56	Prediction of flyrock and backbreak in open pit blasting operation: a neuro-genetic approach. Arabian Journal of Geosciences, 2012, 5, 441-448.	0.6	137
57	Application of TOPSIS method for selecting the most appropriate blast design. Arabian Journal of Geosciences, 2012, 5, 95-101.	0.6	51
58	Prediction of rock fragmentation due to blasting using artificial neural network. Engineering With Computers, 2011, 27, 177-181.	3.5	108
59	Prediction and controlling of flyrock in blasting operation using artificial neural network. Arabian Journal of Geosciences, 2011, 4, 421-425.	0.6	96
60	Superiority of neural networks for pillar stress prediction in bord and pillar method. Arabian Journal of Geosciences, 2011, 4, 845-853.	0.6	21
61	Developing a new fuzzy model to predict burden from rock geomechanical properties. Expert Systems With Applications, 2011, 38, 9266-9273.	4.4	49
62	Development of a fuzzy model to predict flyrock in surface mining. Safety Science, 2011, 49, 298-305.	2.6	119
63	Prediction of Rock Fragmentation Due to Blasting in Sarcheshmeh Copper Mine Using Artificial Neural Networks. Geotechnical and Geological Engineering, 2010, 28, 423-430.	0.8	34
64	Prediction of backbreak in open-pit blasting using fuzzy set theory. Expert Systems With Applications, 2010, 37, 2637-2643.	4.4	82
65	Predicting blast-induced ground vibration using various types of neural networks. Soil Dynamics and Earthquake Engineering, 2010, 30, 1233-1236.	1.9	117
66	Application of various robust techniques to study and evaluate the role of effective parameters on rock fragmentation. Engineering With Computers, 0, , 1.	3.5	2