Yizhi Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9587609/publications.pdf

Version: 2024-02-01

29	996	19	26
papers	citations	h-index	g-index
30	30	30	1067 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	Application of Bacterial Whole-Cell Biosensors in Health., 2022,, 945-961.		4
2	Characterization and identification of microplastics using Raman spectroscopy coupled with multivariate analysis. Analytica Chimica Acta, 2022, 1197, 339519.	5.4	39
3	Ultrasensitive SERS Analysis of Liquid and Gaseous Putrescine and Cadaverine by a 3D-Rosettelike Nanostructure-Decorated Flexible Porous Substrate. Analytical Chemistry, 2022, 94, 5273-5283.	6.5	17
4	Single Cell Raman Spectroscopy Deuterium Isotope Probing for Rapid Antimicrobial Susceptibility Test of Elizabethkingia spp Frontiers in Microbiology, 2022, 13, 876925.	3 . 5	5
5	TRPV1, a novel biomarker associated with lung cancer via excluding immune infiltration. MedComm, 2022, 3, .	7.2	3
6	Redesign of ultrasensitive and robust RecA gene circuit to sense DNA damage. Microbial Biotechnology, 2021, 14, 2481-2496.	4.2	2
7	Development of a Fast Raman-Assisted Antibiotic Susceptibility Test (FRAST) for the Antibiotic Resistance Analysis of Clinical Urine and Blood Samples. Analytical Chemistry, 2021, 93, 5098-5106.	6.5	45
8	In Vitro Anticancer Drug Sensitivity Sensing through Single-Cell Raman Spectroscopy. Biosensors, 2021, 11, 286.	4.7	9
9	Whole-cell bioreporters for evaluating petroleum hydrocarbon contamination. Critical Reviews in Environmental Science and Technology, 2021, 51, 272-322.	12.8	29
10	Lysophosphatidic Acid Receptor 6 (LPAR6) Is a Potential Biomarker Associated with Lung Adenocarcinoma. International Journal of Environmental Research and Public Health, 2021, 18, 11038.	2.6	3
11	Proteorhodopsin Overproduction Enhances the Long-Term Viability of Escherichia coli. Applied and Environmental Microbiology, 2019, 86, .	3.1	12
12	Raman profiling of embryo culture medium to identify aneuploid and euploid embryos. Fertility and Sterility, 2019, 111, 753-762.e1.	1.0	33
13	Monitoring Cr toxicity and remediation processes - combining a whole-cell bioreporter and Cr isotope techniques. Water Research, 2019, 153, 295-303.	11.3	20
14	Application of Bacterial Whole-Cell Biosensors in Health. , 2019, , 1-17.		1
15	Microbial degradation of organophosphorus pesticides: novel degraders, kinetics, functional genes, and genotoxicity assessment. Environmental Science and Pollution Research, 2019, 26, 21668-21681.	5. 3	41
16	Effect of Laser Irradiation on Cell Function and Its Implications in Raman Spectroscopy. Applied and Environmental Microbiology, $2018,84,\ldots$	3.1	40
17	Application of a bacterial whole cell biosensor for the rapid detection of cytotoxicity in heavy metal contaminated seawater. Chemosphere, 2018, 200, 322-329.	8.2	44
18	Ramanâ€activated cell sorting and metagenomic sequencing revealing carbonâ€fixing bacteria in the ocean. Environmental Microbiology, 2018, 20, 2241-2255.	3.8	62

#	Article	IF	CITATIONS
19	Singleâ€cell genomics based on Raman sorting reveals novel carotenoidâ€containing bacteria in the Red Sea. Microbial Biotechnology, 2017, 10, 125-137.	4.2	72
20	Raman-Deuterium Isotope Probing for in-situ identification of antimicrobial resistant bacteria in Thames River. Scientific Reports, 2017, 7, 16648.	3.3	69
21	Raman Deuterium Isotope Probing Reveals Microbial Metabolism at the Single-Cell Level. Analytical Chemistry, 2017, 89, 13305-13312.	6.5	51
22	Raman activated cell sorting. Current Opinion in Chemical Biology, 2016, 33, 1-8.	6.1	83
23	Reverse and Multiple Stable Isotope Probing to Study Bacterial Metabolism and Interactions at the Single Cell Level. Analytical Chemistry, 2016, 88, 9443-9450.	6.5	72
24	Single cell biotechnology to shed a light on biological †dark matter†in nature. Microbial Biotechnology, 2015, 8, 15-16.	4.2	20
25	The influence of carbon sources on the expression of the recA gene and genotoxicity detection by an Acinetobacter bioreporter. Environmental Sciences: Processes and Impacts, 2015, 17, 835-843.	3.5	7
26	Use of a whole-cell bioreporter, Acinetobacter baylyi, to estimate the genotoxicity and bioavailability of chromium(VI)-contaminated soils. Biotechnology Letters, 2015, 37, 343-348.	2.2	29
27	A whole-cell bioreporter approach for the genotoxicity assessment of bioavailability of toxic compounds in contaminated soil in China. Environmental Pollution, 2014, 195, 178-184.	7. 5	40
28	Optimization of Bacterial Whole Cell Bioreporters for Toxicity Assay of Environmental Samples. Environmental Science & Environmental & Environmental & Environmental & Environmental & Environmental &	10.0	84
29	Ultrasound-mediated DNA transfer for bacteria. Nucleic Acids Research, 2007, 35, e129-e129.	14.5	60