Wei Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9587568/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insight into the SO2 resistance mechanism on γ-Fe2O3 catalyst in NH3-SCR reaction: A collaborated experimental and DFT study. Applied Catalysis B: Environmental, 2021, 281, 119544.	20.2	107
2	Morphology and Crystal-Plane Effects of CeO ₂ on TiO ₂ /CeO ₂ Catalysts during NH ₃ -SCR Reaction. Industrial & Engineering Chemistry Research, 2018, 57, 12407-12419.	3.7	90
3	Pore Size Expansion Accelerates Ammonium Bisulfate Decomposition for Improved Sulfur Resistance in Low-Temperature NH ₃ -SCR. ACS Applied Materials & Interfaces, 2019, 11, 4900-4907.	8.0	81
4	Gas phase sulfation of ceria-zirconia solid solutions for generating highly efficient and SO2 resistant NH3-SCR catalysts for NO removal. Journal of Hazardous Materials, 2020, 388, 121729.	12.4	72
5	Ce–Si Mixed Oxide: A High Sulfur Resistant Catalyst in the NH ₃ –SCR Reaction through the Mechanism-Enhanced Process. Environmental Science & Technology, 2021, 55, 4017-4026.	10.0	66
6	Copper Single Atom-Triggered Niobia–Ceria Catalyst for Efficient Low-Temperature Reduction of Nitrogen Oxides. ACS Catalysis, 2022, 12, 2441-2453.	11.2	48
7	Mo doping as an effective strategy to boost low temperature NH3-SCR performance of CeO2/TiO2 catalysts. Catalysis Communications, 2018, 114, 10-14.	3.3	44
8	Enhanced low-temperature NH3-SCR performance of CeTiO catalyst via surface Mo modification. Chinese Journal of Catalysis, 2020, 41, 364-373.	14.0	44
9	Revealing the effect of paired redox-acid sites on metal oxide catalysts for efficient NO removal by NH3-SCR. Journal of Hazardous Materials, 2021, 416, 125826.	12.4	43
10	Influence of CeO2 loading on structure and catalytic activity for NH3-SCR over TiO2-supported CeO2. Journal of Rare Earths, 2020, 38, 883-890.	4.8	42
11	Getting Insights into the Temperature-Specific Active Sites on Platinum Nanoparticles for CO Oxidation: A Combined in Situ Spectroscopic and ab Initio Density Functional Theory Study. ACS Catalysis, 2019, 9, 7759-7768.	11.2	33
12	Highly efficient Pt catalyst on newly designed CeO2-ZrO2-Al2O3 support for catalytic removal of pollutants from vehicle exhaust. Chemical Engineering Journal, 2021, 426, 131855.	12.7	30
13	Highly Active and Stable Palladium Catalysts on Novel Ceria–Alumina Supports for Efficient Oxidation of Carbon Monoxide and Hydrocarbons. Environmental Science & Technology, 2021, 55, 7624-7633.	10.0	28
14	Tuning Singleâ€atom Pt ₁ â^'CeO ₂ Catalyst for Efficient CO and C ₃ H ₆ Oxidation: Size Effect of Ceria on Pt Structural Evolution. ChemNanoMat, 2020, 6, 1797-1805.	2.8	27
15	Enhancing low-temperature NH3-SCR performance of Fe–Mn/CeO2 catalyst by Al2O3 modification. Journal of Rare Earths, 2022, 40, 1454-1461.	4.8	26
16	Morphology-Sensitive Sulfation Effect on Ceria Catalysts for NH3-SCR. Topics in Catalysis, 2020, 63, 932-943.	2.8	24
17	The dual effects of ammonium bisulfate on the selective catalytic reduction of NO with NH3 over Fe2O3-WO3 catalyst confined in MCM-41. Chemical Engineering Journal, 2020, 389, 124271.	12.7	24
18	Structure-activity relationship of Pt catalyst on engineered ceria-alumina support for CO oxidation. Journal of Catalysis, 2022, 405, 236-248.	6.2	23

Wei Tan

#	Article	IF	CITATIONS
19	Transformation of Highly Stable Pt Single Sites on Defect Engineered Ceria into Robust Pt Clusters for Vehicle Emission Control. Environmental Science & Technology, 2021, 55, 12607-12618.	10.0	21
20	Cerium manganese oxides coupled with ZSM-5: A novel SCR catalyst with superior K resistance. Chemical Engineering Journal, 2022, 445, 136530.	12.7	20
21	Molybdenum oxide as an efficient promoter to enhance the NH3-SCR performance of CeO2-SiO2 catalyst for NO removal. Catalysis Today, 2022, 397-399, 475-483.	4.4	19
22	Effects of different methods of introducing Mo on denitration performance and anti-SO2 poisoning performance of CeO2. Chinese Journal of Catalysis, 2021, 42, 1488-1499.	14.0	19
23	Insights into the precursor effect on the surface structure of γ-Al2O3 and NO + CO catalytic performance of CO-pretreated CuO/MnOx/γ-Al2O3 catalysts. Journal of Colloid and Interface Science, 2019, 554, 611-618.	9.4	15
24	Solid-phase impregnation promotes Ce doping in TiO2 for boosted denitration of CeO2/TiO2 catalysts. Chinese Chemical Letters, 2022, 33, 935-938.	9.0	15
25	Activity enhancement of WO3 modified FeTiO catalysts for the selective catalytic reduction of NO by NH3. Catalysis Today, 2021, 375, 614-622.	4.4	13
26	Unraveling the SO ₂ Poisoning Effect over the Lifetime of MeO _{<i>x</i>} (Me =) Tj ETQq0 with Surface Species. Journal of Physical Chemistry C, 2022, 126, 12168-12177.	0 0 rgBT 3.1	/Overlock 10 12
27	Evaluation of Manganese Oxide Octahedral Molecular Sieves for CO and C3H6 Oxidation at Diesel Exhaust Conditions. Frontiers in Environmental Chemistry, 2021, 2, .	1.6	8
28	CeO2 doping boosted low-temperature NH3-SCR activity of FeTiOx catalyst: A microstructure analysis and reaction mechanistic study. Frontiers of Environmental Science and Engineering, 2022, 16, 1.	6.0	5
29	Boosting the catalytic performance of single-atom catalysts by tuning surface lattice expanding confinement. Chemical Communications, 0, , .	4.1	1