Jinquan Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9587521/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Isolation, characterization, and application of a novel specific Salmonella bacteriophage in different food matrices. Food Research International, 2018, 111, 631-641.	2.9	100
2	Application of a Phage Cocktail for Control of Salmonella in Foods and Reducing Biofilms. Viruses, 2019, 11, 841.	1.5	89
3	Isolation, Characterization, and Application of Bacteriophage LPSE1 Against Salmonella enterica in Ready to Eat (RTE) Foods. Frontiers in Microbiology, 2018, 9, 1046.	1.5	82
4	The two-component regulatory system CiaRH contributes to the virulence of Streptococcus suis 2. Veterinary Microbiology, 2011, 148, 99-104.	0.8	60
5	Two Spx Regulators Modulate Stress Tolerance and Virulence in Streptococcus suis Serotype 2. PLoS ONE, 2014, 9, e108197.	1.1	42
6	Characteristics of Vibrio parahaemolyticus isolates obtained from crayfish (Procambarus clarkii) in freshwater. International Journal of Food Microbiology, 2016, 238, 132-138.	2.1	37
7	Contribution of NADH oxidase to oxidative stress tolerance and virulence of <i>Streptococcus suis </i> serotype 2. Virulence, 2017, 8, 53-65.	1.8	37
8	Application of a novel phage vB_SalS-LPSTLL for the biological control of Salmonella in foods. Food Research International, 2021, 147, 110492.	2.9	36
9	The global emergence of a novel <i>Streptococcus suis</i> clade associated with human infections. EMBO Molecular Medicine, 2021, 13, e13810.	3.3	33
10	Application of a Broad Range Lytic Phage LPST94 for Biological Control of Salmonella in Foods. Microorganisms, 2020, 8, 247.	1.6	32
11	Identification and characterization of the chromosomal yefM-yoeB toxin-antitoxin system of Streptococcus suis. Scientific Reports, 2015, 5, 13125.	1.6	30
12	Evaluation of the immunogenicity and the protective efficacy of a novel identified immunogenic protein, SsPepO, of Streptococcus suis serotype 2. Vaccine, 2011, 29, 6514-6519.	1.7	29
13	Application of a Novel Phage LPSEYT for Biological Control of Salmonella in Foods. Microorganisms, 2020, 8, 400.	1.6	29
14	Characterization of Salmonella Phage LPST153 That Effectively Targets Most Prevalent Salmonella Serovars. Microorganisms, 2020, 8, 1089.	1.6	27
15	Regulation of Inhibition of Neutrophil Infiltration by the Two-Component Regulatory System CovRS in Subcutaneous Murine Infection with Group A Streptococcus. Infection and Immunity, 2013, 81, 974-983.	1.0	26
16	Decontamination of Escherichia coli O157:H7 on fresh Romaine lettuce using a novel bacteriophage lysin. International Journal of Food Microbiology, 2021, 341, 109068.	2.1	23
17	Gut Microbiota and Its Metabolite Deoxycholic Acid Contribute to Sucralose Consumption-Induced Nonalcoholic Fatty Liver Disease. Journal of Agricultural and Food Chemistry, 2021, 69, 3982-3991.	2.4	20
18	Graphene quantum dot-decorated mesoporous silica nanoparticles for high aspirin loading capacity and its pH-triggered release. Analytical Methods, 2016, 8, 2561-2567.	1.3	18

Jinquan Li

#	Article	IF	CITATIONS
19	Protective effects of chicken egg yolk immunoglobulins (IgY) against experimental Aeromonas hydrophila infection in blunt snout bream (Megalobrama amblycephala). Fish and Shellfish Immunology, 2018, 78, 26-34.	1.6	18
20	Binding of Fibronectin to SsPepO Facilitates the Development of Streptococcus suis Meningitis. Journal of Infectious Diseases, 2018, 217, 973-982.	1.9	16
21	Draft Genome Sequence of Hypervirulent and Vaccine Candidate Streptococcus suis Strain SC19. Genome Announcements, 2017, 5, .	0.8	14
22	Predominance of <i>Streptococcus suis</i> ST1 and ST7 in human cases in China, and detection of a novel sequence type, ST658. Virulence, 2017, 8, 1031-1035.	1.8	14
23	Immunogenicity and protective capacity of EF-Tu and FtsZ of Streptococcus suis serotype 2 against lethal infection. Vaccine, 2018, 36, 2581-2588.	1.7	13
24	Integrin α5β1, as a Receptor of Fibronectin, Binds the FbaA Protein of Group A <i>Streptococcus</i> To Initiate Autophagy during Infection. MBio, 2020, 11, .	1.8	13
25	Construction and Characterization of an Aeromonas hydrophila Multi-Gene Deletion Strain and Evaluation of Its Potential as a Live-Attenuated Vaccine in Grass Carp. Vaccines, 2021, 9, 451.	2.1	13
26	Complete Genome Sequence of <i>Aeromonas</i> Phage ZPAH7 with Halo Zones, Isolated in China. Microbiology Resource Announcements, 2019, 8, .	0.3	12
27	Evaluation of the protective efficacy of four novel identified membrane associated proteins of Streptococcus suis serotype 2. Vaccine, 2015, 33, 2254-2260.	1.7	11
28	The <i><i>sagA</i></i> / <i><i>pel</i></i> locus does not regulate the expression of the M protein of the M M Protein of the M Pr	1.8	10
29	In situ reduction triggers the highly sensitive detection of pesticide by classic gold nanoparticle and quantum dots nanocomposite. Analytica Chimica Acta, 2021, 1172, 338679.	2.6	9
30	Single microbead-based fluorescence "turn on―detection of biothiols by flow cytometry. Talanta, 2019, 195, 197-203.	2.9	8
31	Genetic Diversity and Virulence Potential of Staphylococcus aureus Isolated from Crayfish (Procambarus clarkii). Current Microbiology, 2017, 74, 28-33.	1.0	7
32	Genotypic Analyses and Virulence Characterization of Listeria monocytogenes Isolates from Crayfish (Procambarus clarkii). Current Microbiology, 2015, 70, 704-709.	1.0	6
33	Formate-tetrahydrofolate ligase is involved in the virulence of Streptococcus suis serotype 2. Microbial Pathogenesis, 2016, 98, 149-154.	1.3	6
34	A <i>Streptococcus suis</i> Live Vaccine Suppresses Streptococcal Toxic Shock-Like Syndrome and Provides Sequence Type-Independent Protection. Journal of Infectious Diseases, 2019, 219, 448-458.	1.9	6
35	GntR is involved in the expression of virulence in strain Streptococcus suis P1/7. FEMS Microbiology Letters, 2018, 365, .	0.7	5
36	A Markerless Gene Deletion System in Streptococcus suis by Using the Copper-Inducible Vibrio parahaemolyticus YoeB Toxin as a Counterselectable Marker. Microorganisms, 2021, 9, 1095.	1.6	5

Jinquan Li

#	Article	IF	CITATIONS
37	Genome Sequence of Hypervirulent Aeromonas hydrophila Strain HZAUAH. Genome Announcements, 2017, 5, .	0.8	4
38	The two-component regulatory system CpxA/R is required for the pathogenesis of Aeromonas hydrophila. FEMS Microbiology Letters, 2018, 365, .	0.7	4
39	Binding of Plasminogen to Streptococcus suis Protein Endopeptidase O Facilitates Evasion of Innate Immunity in Streptococcus suis. Frontiers in Microbiology, 2021, 12, 694103.	1.5	4
40	Complete Genome Sequence of Salmonella enterica Lytic Bacteriophage LPST10, Isolated in China. Genome Announcements, 2017, 5, .	0.8	3
41	Identification of four type II toxin-antitoxin systems in Actinobacillus pleuropneumoniae. FEMS Microbiology Letters, 2017, 364, .	0.7	3
42	Genome analysis provides insight into hyper-virulence of Streptococcus suis LSM178, a human strain with a novel sequence type 1005. Scientific Reports, 2021, 11, 23919.	1.6	2
43	Genomic analyses of Staphylococcus aureus isolated from yaks in Ganzi Tibetan Autonomous Prefecture, China. Journal of Antimicrobial Chemotherapy, 2022, , .	1.3	1