David Bialas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9587469/publications.pdf

Version: 2024-02-01

471061 525886 1,545 26 17 27 citations h-index g-index papers 30 30 30 2090 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Organic Semiconductors based on Dyes and Color Pigments. Advanced Materials, 2016, 28, 3615-3645.	11.1	377
2	Perspectives in Dye Chemistry: A Rational Approach toward Functional Materials by Understanding the Aggregate State. Journal of the American Chemical Society, 2021, 143, 4500-4518.	6.6	149
3	Discrete π-Stacks of Perylene Bisimide Dyes within Folda-Dimers: Insight into Long- and Short-Range Exciton Coupling. Journal of the American Chemical Society, 2018, 140, 9986-9995.	6.6	136
4	Tunable Low-LUMO Boron-Doped Polycyclic Aromatic Hydrocarbons by General One-Pot C–H Borylations. Journal of the American Chemical Society, 2019, 141, 9096-9104.	6.6	103
5	Perylene Diimide-Based Hj- and hJ-Aggregates: The Prospect of Exciton Band Shape Engineering in Organic Materials. Journal of Physical Chemistry C, 2019, 123, 20567-20578.	1.5	91
6	An Efficient Narrowband Nearâ€Infrared at 1040Ânm Organic Photodetector Realized by Intermolecular Charge Transfer Mediated Coupling Based on a Squaraine Dye. Advanced Materials, 2021, 33, e2100582.	11.1	88
7	Slipâ€Stacked Jâ€Aggregate Materials for Organic Solar Cells and Photodetectors. Advanced Materials, 2022, 34, e2104678.	11.1	77
8	Exciton Coupling of Merocyanine Dyes from H- to J-type in the Solid State by Crystal Engineering. Nano Letters, 2017, 17, 1719-1726.	4.5	59
9	Structural and quantum chemical analysis of exciton coupling in homo- and heteroaggregate stacks of merocyanines. Nature Communications, 2016, 7, 12949.	5.8	58
10	Polymorphism in Squaraine Dye Aggregates by Selfâ€Assembly Pathway Differentiation: Panchromatic Tubular Dye Nanorods versus Jâ€Aggregate Nanosheets. Angewandte Chemie - International Edition, 2021, 60, 11949-11958.	7.2	58
11	Defined Merocyanine Dye Stacks from a Dimer up to an Octamer by Spacer-Encoded Self-Assembly Approach. Journal of the American Chemical Society, 2019, 141, 7428-7438.	6.6	53
12	Davydov Splitting in Squaraine Dimers. Journal of Physical Chemistry C, 2019, 123, 18734-18745.	1.5	41
13	Spacerâ€Modulated Differentiation Between Selfâ€Assembly and Folding Pathways for Bichromophoric Merocyanine Dyes. Chemistry - A European Journal, 2015, 21, 14851-14861.	1.7	27
14	Unusual Non-Kasha Photophysical Behavior of Aggregates of Push–Pull Donor–Acceptor Chromophores. Journal of Physical Chemistry C, 2020, 124, 2146-2159.	1.5	22
15	Folding and fluorescence enhancement with strong odd–even effect for a series of merocyanine dye oligomers. Chemical Science, 2021, 12, 8342-8352.	3.7	21
16	Polymorphism in Squaraine Dye Aggregates by Selfâ€Assembly Pathway Differentiation: Panchromatic Tubular Dye Nanorods versus Jâ€Aggregate Nanosheets. Angewandte Chemie, 2021, 133, 12056-12065.	1.6	19
17	Tuning Exciton Coupling of Merocyanine Nucleoside Dimers by RNA, DNA and GNA Double Helix Conformations. Angewandte Chemie - International Edition, 2022, 61, .	7.2	18
18	Excitonâ€Vibrational Couplings in Homo―and Heterodimer Stacks of Perylene Bisimide Dyes within Cyclophanes: Studies on Absorption Properties and Theoretical Analysis. Chemistry - A European Journal, 2016, 22, 15011-15018.	1.7	17

#	Article	IF	CITATIONS
19	Folding-induced exciton coupling in homo- and heterodimers of merocyanine dyes. Chemical Communications, 2016, 52, 3777-3780.	2.2	17
20	Switching resonance character within merocyanine stacks and its impact on excited-state dynamics. CheM, 2021, 7, 715-725.	5.8	16
21	Bis(merocyanine) Heteroâ€Foldaâ€Dimers: Evaluation of Exciton Coupling between Different Types of Ï€â€Stacked Chromphores. Chemistry - A European Journal, 2019, 25, 11294-11301.	1.7	11
22	Bis(merocyanine) Homoâ€Foldaâ€Dimers: Evaluation of Electronic and Spectral Changes in Wellâ€Defined Dye Aggregate Geometries. Chemistry - A European Journal, 2019, 25, 11285-11293.	1.7	11
23	Reversible fluorescence modulation through the photoisomerization of an azobenzene-bridged perylene bisimide cyclophane. Organic Chemistry Frontiers, 2021, 8, 1424-1430.	2.3	10
24	Tuning Exciton Coupling of Merocyanine Nucleoside Dimers by RNA, DNA and GNA Double Helix Conformations. Angewandte Chemie, 2022, 134, .	1.6	8
25	Innenrù⁄4cktitelbild: Polymorphism in Squaraine Dye Aggregates by Selfâ€Assembly Pathway Differentiation: Panchromatic Tubular Dye Nanorods versus Jâ€Aggregate Nanosheets (Angew. Chem.) Tj ETQq1	1 0. 8843	14 og BT /Ove
26	Supramolecular p/nâ€heterojunction of C ₆₀ â€functionalized bis(merocyanine) quadruple stack: A model system for charge carrier separation and recombination in organic solar cells. Natural Sciences, 2022, 2, .	1.0	0