Maria José Gonçalves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9586974/publications.pdf

Version: 2024-02-01

28 papers 1,229 citations

394421 19 h-index 501196 28 g-index

28 all docs 28 docs citations

times ranked

28

1658 citing authors

#	Article	lF	Citations
1	Antifungal activity of the essential oil of Thymus pulegioides on Candida, Aspergillus and dermatophyte species. Journal of Medical Microbiology, 2006, 55, 1367-1373.	1.8	249
2	Essential oil of Daucus carota subsp. halophilus: Composition, antifungal activity and cytotoxicity. Journal of Ethnopharmacology, 2008, 119, 129-134.	4.1	124
3	Chemical composition and antifungal activity of the essential oils of Lavandula viridis L'H $ ilde{A}$ ©r Journal of Medical Microbiology, 2011, 60, 612-618.	1.8	113
4	In vitro susceptibility of some species of yeasts and filamentous fungi to essential oils of Salvia officinalis. Industrial Crops and Products, 2007, 26, 135-141.	5. 2	81
5	Myrtus communis L. as source of a bioactive and safe essential oil. Food and Chemical Toxicology, 2015, 75, 166-172.	3 . 6	53
6	Composition and biological activity of the essential oil from Thapsia minor, a new source of geranyl acetate. Industrial Crops and Products, 2012, 35, 166-171.	5 . 2	51
7	Antimicrobial Activity and Chemical Composition of the Bark Oil ofCroton stellulifer, an Endemic Species from S. Tomé e PrÃncipe. Planta Medica, 2000, 66, 647-650.	1.3	48
8	Antifungal Activity of the Essential Oil of <i>Thymus</i> x <i>viciosoi</i> against <i>Candida, Cryptococcus, Aspergillus</i> and Dermatophyte Species. Planta Medica, 2010, 76, 882-888.	1.3	47
9	Essential oils from Distichoselinum tenuifolium: Chemical composition, cytotoxicity, antifungal and anti-inflammatory properties. Journal of Ethnopharmacology, 2010, 130, 593-598.	4.1	47
10	Ocimum tenuiflorum L. and Ocimum basilicum L., two spices of Lamiaceae family with bioactive essential oils. Industrial Crops and Products, 2018, 113, 89-97.	5 . 2	43
11	Effects of Essential Oils from Eucalyptus globulus Leaves on Soil Organisms Involved in Leaf Degradation. PLoS ONE, 2013, 8, e61233.	2.5	42
12	Essential oil ofDittrichia viscosa ssp.viscosa: analysis by13C-NMR and antimicrobial activity. Flavour and Fragrance Journal, 2006, 21, 324-332.	2.6	39
13	Antifungal activity of the essential oil of Thymus villosus subsp. lusitanicus against Candida, Cryptococcus, Aspergillus and dermatophyte species. Industrial Crops and Products, 2013, 51, 93-99.	5.2	38
14	Unveiling the Antifungal Potential of Two Iberian Thyme Essential Oils: Effect on C. albicans Germ Tube and Preformed Biofilms. Frontiers in Pharmacology, 2019, 10, 446.	3.5	29
15	Composition of a volatile extract of Eryngium duriaei subsp. juresianum (M. LaÃnz) M. LaÃnz, signalised by the antifungal activity. Journal of Pharmaceutical and Biomedical Analysis, 2011, 54, 619-622.	2.8	27
16	New Claims for Wild Carrot (<i>Daucus carota</i> subsp. <i>carota</i>) Essential Oil. Evidence-based Complementary and Alternative Medicine, 2016, 2016, 1-10.	1.2	27
17	New compounds, chemical composition, antifungal activity and cytotoxicity of the essential oil from Myrtus nivellei Batt. & Samp; Trab., an endemic species of Central Sahara. Journal of Ethnopharmacology, 2013, 149, 613-620.	4.1	26
18	Antifungal activity of the essential oil ofThymus capitellatus againstCandida, Aspergillus and dermatophyte strains. Flavour and Fragrance Journal, 2006, 21, 749-753.	2.6	25

#	Article	IF	CITATIONS
19	Composition, antifungal activity and cytotoxicity of the essential oils of Seseli tortuosum L. and Seseli montanum subsp. peixotoanum (Samp.) M. LaÃnz from Portugal. Industrial Crops and Products, 2012, 39, 204-209.	5.2	21
20	Activity of Thymus caespititius essential oil and $\hat{l}\pm$ -terpineol against yeasts and filamentous fungi. Industrial Crops and Products, 2014, 62, 107-112.	5.2	19
21	Chemical characterization and bioactivity of phytochemicals from Iberian endemic Santolina semidentata and strategies for ex situ propagation. Industrial Crops and Products, 2015, 74, 505-513.	5.2	18
22	Antifungal activity of extracts from Cynomorium coccineum growing wild in Sardinia island (Italy). Natural Product Research, 2015, 29, 2247-2250.	1.8	16
23	Antifungal activity and chemical composition of the essential oil from the aerial parts of two new <i>Teucrium capitatum </i> L. chemotypes from Sardinia Island, Italy. Natural Product Research, 2021, 35, 6007-6013.	1.8	10
24	Antifungal and anti-inflammatory potential of the endangered aromatic plant Thymus albicans. Scientific Reports, 2020, 10, 18859.	3.3	9
25	Evaluation of the mycotoxins content of <i>Salicornia</i> spp .: a gourmet plant alternative to salt. Food Additives and Contaminants: Part B Surveillance, 2020, 13, 162-170.	2.8	9
26	Chemical and biomolecular analyses to discriminate three taxa of Pistacia genus from Sardinia Island (Italy) and their antifungal activity. Natural Product Research, 2018, 32, 2766-2774.	1.8	8
27	Chemical composition and biological activity of essential oil of <i>Teucrium scordium</i> L. subsp. <i>scordioides</i> (Schreb.) Arcang. (Lamiaceae) from Sardinia Island (Italy). Natural Product Research, 2021, , 1-8.	1.8	8
28	Chemical Composition and Antimicrobial Activity of the Commercially Available Oil of <i>Luma chequen</i> (Molina) A. Gray. Journal of Essential Oil Research, 2006, 18, 108-110.	2.7	2