
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9586885/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An interfacial survey on microstructure of ZrB2-based ceramics codoped with carbon fibers and SiC whiskers. Materials Chemistry and Physics, 2022, 275, 125322.	4.0	5
2	Fabrication of (Zr,Ti)B2–ZrN–BN composites through reactive spark plasma sintering of ZrB2 and TiN. Micron, 2022, 154, 103203.	2.2	5
3	On the reactive spark plasma sinterability of ZrB2–SiC–TiN composite. Journal of Alloys and Compounds, 2022, 909, 164611.	5.5	4
4	Nanocharacterization of spark plasma sintered TiB2–SiC–graphene composites. Materials Characterization, 2022, 189, 111986.	4.4	5
5	Microstructural evolution of TiB2–SiC composites empowered with Si3N4, BN or TiN: A comparative study. Ceramics International, 2021, 47, 1002-1011.	4.8	10
6	A novel ZrB2-based composite manufactured with Ti3AlC2 additive. Ceramics International, 2021, 47, 817-827.	4.8	8
7	Post hot rolling of spark plasma sintered Ti–Mo–B4C composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 799, 140214.	5.6	10
8	ZrB2SiCw composites with different carbonaceous additives. International Journal of Refractory Metals and Hard Materials, 2021, 95, 105457.	3.8	5
9	Synergistic influence of SiC and C ₃ N ₄ reinforcements on the characteristics of ZrB ₂ -based composites. Journal of Asian Ceramic Societies, 2021, 9, 53-62.	2.3	6
10	Effects of discrete and simultaneous addition of SiC and Si3N4 on microstructural development of TiB2 ceramics. Ceramics International, 2021, 47, 3520-3528.	4.8	9
11	Spark plasma sinterability and thermal diffusivity of TiN ceramics with graphene additive. Ceramics International, 2021, 47, 10057-10062.	4.8	9
12	Toughening of ZrB2-based composites with in-situ synthesized ZrC from ZrO2 and graphite precursors. Journal of Science: Advanced Materials and Devices, 2021, 6, 42-48.	3.1	8
13	Spark plasma sintering of TiB2-based ceramics with Ti3AlC2. Ceramics International, 2021, 47, 11929-11934.	4.8	16
14	Combined role of SiC whiskers and graphene nano-platelets on the microstructure of spark plasma sintered ZrB2 ceramics. Ceramics International, 2021, 47, 12459-12466.	4.8	19
15	Solid solution formation during spark plasma sintering of ZrB2–TiC–graphite composites. Ceramics International, 2020, 46, 2923-2930.	4.8	37
16	Combined role of SiC particles and SiC whiskers on the characteristics of spark plasma sintered ZrB2 ceramics. Ceramics International, 2020, 46, 5773-5778.	4.8	52
17	Nano-diamond reinforced ZrB2–SiC composites. Ceramics International, 2020, 46, 10172-10179.	4.8	62
18	Phase transformation in spark plasma sintered ZrB2–V–C composites at different temperatures. Ceramics International, 2020, 46, 9415-9420.	4.8	11

#	Article	IF	CITATIONS
19	Role of co-addition of BN and SiC on microstructure of TiB2-based composites densified by SPS method. Ceramics International, 2020, 46, 25341-25350.	4.8	32
20	Electron microscopy characterization of porous ZrB2–SiC–AlN composites prepared by pressureless sintering. Ceramics International, 2020, 46, 25415-25423.	4.8	30
21	TEM characterization of hot-pressed ZrB2-SiC-AlN composites. Results in Physics, 2020, 19, 103348.	4.1	12
22	Electron microscopy study of ZrB2–SiC–AlN composites: Hot-pressing vs. pressureless sintering. Ceramics International, 2020, 46, 29334-29338.	4.8	22
23	Role of graphene nano-platelets on thermal conductivity and microstructure of TiB2–SiC ceramics. Ceramics International, 2020, 46, 21775-21783.	4.8	50
24	Enhanced densification of spark plasma sintered TiB2 ceramics with low content AlN additive. Ceramics International, 2020, 46, 22127-22133.	4.8	33
25	Densification behavior and microstructure development in TiB2 ceramics doped with h-BN. Ceramics International, 2020, 46, 18970-18975.	4.8	56
26	Characterization of ZrB2–TiC composites reinforced with short carbon fibers. Ceramics International, 2020, 46, 23155-23164.	4.8	38
27	Enhanced fracture toughness of ZrB2–SiCw ceramics with graphene nano-platelets. Ceramics International, 2020, 46, 24906-24915.	4.8	43
28	Strengthening of TiC ceramics sintered by spark plasma via nano-graphite addition. Ceramics International, 2020, 46, 12400-12408.	4.8	66
29	Effects of graphite nano-flakes on thermal and microstructural properties of TiB2–SiC composites. Ceramics International, 2020, 46, 11622-11630.	4.8	71
30	Characterization of triplet Ti–TiB–TiC composites: Comparison of in-situ formation and ex-situ addition of TiC. Ceramics International, 2020, 46, 11726-11734.	4.8	67
31	Synthesis of novel ternary g-C3N4/SiC/C-Dots photocatalysts and their visible-light-induced activities in removal of various contaminants. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 392, 112431.	3.9	43
32	Role of nano-WC addition on microstructural, mechanical and thermal characteristics of TiC–SiCw composites. International Journal of Refractory Metals and Hard Materials, 2020, 90, 105248.	3.8	59
33	Magnetic CoFe2O4 nanoparticles doped with metal ions: A review. Ceramics International, 2020, 46, 18391-18412.	4.8	155
34	Influence of SiAlON addition on the microstructure development of hot-pressed ZrB2–SiC composites. Ceramics International, 2020, 46, 19209-19216.	4.8	58
35	Influence of vanadium content on the characteristics of spark plasma sintered ZrB2–SiC–V composites. Journal of Alloys and Compounds, 2019, 805, 725-732.	5.5	81
36	A novel ZrB2–C3N4 composite with improved mechanical properties. Ceramics International, 2019, 45, 21512-21519.	4.8	66

#	Article	IF	CITATIONS
37	Spark plasma sintering of TiC–SiCw ceramics. Ceramics International, 2019, 45, 19808-19821.	4.8	88
38	Thermal diffusivity and microstructure of spark plasma sintered TiB2SiC Ti composite. Ceramics International, 2019, 45, 8333-8344.	4.8	82
39	Spark plasma sintering of ZrB2-based composites co-reinforced with SiC whiskers and pulverized carbon fibers. International Journal of Refractory Metals and Hard Materials, 2019, 83, 104989.	3.8	65
40	Microstructural, thermal and mechanical characterization of TiB2–SiC composites doped with short carbon fibers. International Journal of Refractory Metals and Hard Materials, 2019, 82, 129-135.	3.8	97
41	Reactive spark plasma sintering of TiB2–SiC–TiN novel composite. International Journal of Refractory Metals and Hard Materials, 2019, 81, 119-126.	3.8	94
42	Spark plasma sintering of Al-doped ZrB2–SiC composite. Ceramics International, 2019, 45, 4262-4267.	4.8	97
43	Microstructure and thermomechanical characteristics of spark plasma sintered TiC ceramics doped with nano-sized WC. Ceramics International, 2019, 45, 2153-2160.	4.8	107
44	Influence of TiN dopant on microstructure of TiB2 ceramic sintered by spark plasma. Ceramics International, 2019, 45, 5306-5311.	4.8	51
45	Microstructural investigation of spark plasma sintered TiB2 ceramics with Si3N4 addition. Ceramics International, 2018, 44, 13367-13372.	4.8	86
46	Effects of carbon additives on the properties of ZrB2–based composites: A review. Ceramics International, 2018, 44, 7334-7348.	4.8	177
47	Effects of nano-graphite content on the characteristics of spark plasma sintered ZrB2–SiC composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 716, 99-106.	5.6	99
48	Densification improvement of spark plasma sintered TiB2-based composites with micron-, submicron- and nano-sized SiC particulates. Ceramics International, 2018, 44, 11431-11437.	4.8	100
49	Synergistic effects of graphite nano-flakes and submicron SiC particles on the characteristics of spark plasma sintered ZrB2 nanocomposites. International Journal of Refractory Metals and Hard Materials, 2018, 75, 10-17.	3.8	82
50	Phase evolution during spark plasma sintering of novel Si3N4-doped TiB2–SiC composite. Materials Characterization, 2018, 145, 225-232.	4.4	83
51	Effects of spark plasma sintering temperature on densification, hardness and thermal conductivity of titanium carbide. Ceramics International, 2018, 44, 14541-14546.	4.8	122
52	Reinforcing effects of SiC whiskers and carbon nanoparticles in spark plasma sintered ZrB2 matrix composites. Ceramics International, 2018, 44, 19932-19938.	4.8	85
53	A novel ZrB2–VB2–ZrC composite fabricated by reactive spark plasma sintering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 731, 131-139.	5.6	82
54	Optimization of effective parameters on thermal shock resistance of ZrB 2 -SiC-based composites prepared by SPS: Using Taguchi design. Materials Chemistry and Physics, 2017, 196, 333-340.	4.0	73

#	Article	IF	CITATIONS
55	Sintering behavior of ZrB2–SiC composites doped with Si3N4: A fractographical approach. Ceramics International, 2017, 43, 9699-9708.	4.8	85
56	Synthesis and photocatalytic performance of hollow sphere particles of SiO2-TiO2 composite of mesocellular foam walls. Ceramics International, 2017, 43, 11786-11791.	4.8	12
57	Densification, microstructure and mechanical properties of hot pressed ZrB 2 –SiC ceramic doped with nano-sized carbon black. Ceramics International, 2017, 43, 8411-8417.	4.8	96
58	Contribution of SiC particle size and spark plasma sintering conditions on grain growth and hardness of TiB2 composites. Ceramics International, 2017, 43, 13924-13931.	4.8	96
59	Fractographical characterization of hot pressed and pressureless sintered SiAlON-doped ZrB2–SiC composites. Materials Characterization, 2015, 102, 137-145.	4.4	74
60	Fractographical characterization of hot pressed and pressureless sintered AlN-doped ZrB2–SiC composites. Materials Characterization, 2015, 110, 77-85.	4.4	76