Thomas Kampourakis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9586450/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Myosin light chain phosphorylation enhances contraction of heart muscle via structural changes in both thick and thin filaments. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3039-47.	3.3	105
2	Myosin binding protein-C activates thin filaments and inhibits thick filaments in heart muscle cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18763-18768.	3.3	103
3	Omecamtiv mercabil and blebbistatin modulate cardiac contractility by perturbing the regulatory state of the myosin filament. Journal of Physiology, 2018, 596, 31-46.	1.3	83
4	Phosphorylation of myosin regulatory light chain controls myosin head conformation in cardiac muscle. Journal of Molecular and Cellular Cardiology, 2015, 85, 199-206.	0.9	52
5	Distinct contributions of the thin and thick filaments to length-dependent activation in heart muscle. ELife, 2017, 6, .	2.8	48
6	Site-specific phosphorylation of myosin binding protein-C coordinates thin and thick filament activation in cardiac muscle. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15485-15494.	3.3	48
7	Microscale thermophoresis suggests a new model of regulation of cardiac myosin function via interaction with cardiac myosin-binding protein C. Journal of Biological Chemistry, 2022, 298, 101485.	1.6	27
8	Regulatory domain of troponin moves dynamically during activation of cardiac muscle. Journal of Molecular and Cellular Cardiology, 2014, 75, 181-187.	0.9	22
9	Hypertrophic cardiomyopathy mutation R58Q in the myosin regulatory light chain perturbs thick filament-based regulation in cardiac muscle. Journal of Molecular and Cellular Cardiology, 2018, 117, 72-81.	0.9	22
10	Stress-dependent activation of myosin in the heart requires thin filament activation and thick filament mechanosensing. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	21
11	Structural and functional effects of myosin-binding protein-C phosphorylation in heart muscle are not mimicked by serine-to-aspartate substitutions. Journal of Biological Chemistry, 2018, 293, 14270-14275.	1.6	19
12	Cardiac myosin regulatory light chain kinase modulates cardiac contractility by phosphorylating both myosin regulatory light chain and troponin I. Journal of Biological Chemistry, 2020, 295, 4398-4410.	1.6	16
13	Orientation of the N- and C-Terminal Lobes of the Myosin Regulatory Light Chain in Cardiac Muscle. Biophysical Journal, 2015, 108, 304-314.	0.2	15
14	Reversible Covalent Binding to Cardiac Troponin C by the Ca ²⁺ -Sensitizer Levosimendan. Biochemistry, 2016, 55, 6032-6045.	1.2	14
15	The regulatory light chain mediates inactivation of myosin motors during active shortening of cardiac muscle. Nature Communications, 2021, 12, 5272.	5.8	10
16	High Throughput Screen Identifies Small Molecule Effectors That Modulate Thin Filament Activation in Cardiac Muscle. ACS Chemical Biology, 2021, 16, 225-235.	1.6	7
17	The Role of Electrostatics in the Mechanism of Cardiac Thin Filament Based Sensitizers. ACS Chemical Biology, 2020, 15, 2289-2298.	1.6	5
18	Thioimidate Bond Formation between Cardiac Troponin C and Nitrile-containing Compounds. ACS Medicinal Chemistry Letters, 2019, 10, 1007-1012.	1.3	4

#	Article	IF	CITATIONS
19	A Potent Fluorescent Reversible-Covalent Inhibitor of Cardiac Muscle Contraction. ACS Medicinal Chemistry Letters, 2021, 12, 1503-1507.	1.3	1
20	Drugging the Sarcomere, a Delicate Balance: Position of N-Terminal Charge of the Inhibitor W7. ACS Chemical Biology, 0, , .	1.6	1