Donal S O'leary

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9586375/publications.pdf Version: 2024-02-01

DONAL SOLEARY

#	Article	IF	CITATIONS
1	Blood flow restriction training and the exercise pressor reflex: a call for concern. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H1440-H1452.	3.2	166
2	Neural Regulation of Cardiovascular Response to Exercise: Role of Central Command and Peripheral Afferents. BioMed Research International, 2014, 2014, 1-20.	1.9	144
3	Heart failure alters the strength and mechanisms of the muscle metaboreflex. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H818-H828.	3.2	101
4	Neural control of circulation and exercise: a translational approach disclosing interactions between central command, arterial baroreflex, and muscle metaboreflex. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H381-H392.	3.2	90
5	Severe exercise alters the strength and mechanisms of the muscle metaboreflex. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H1645-H1652.	3.2	81
6	Arterial baroreflex alters strength and mechanisms of muscle metaboreflex during dynamic exercise. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H1374-H1380.	3.2	68
7	Muscle metaboreflex control of ventricular contractility during dynamic exercise. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H751-H757.	3.2	66
8	Guidelines for animal exercise and training protocols for cardiovascular studies. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H1100-H1138.	3.2	66
9	Clinical safety of blood flow-restricted training? A comprehensive review of altered muscle metaboreflex in cardiovascular disease during ischemic exercise. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H90-H109.	3.2	59
10	Impaired muscle metaboreflex-induced increases in ventricular function in heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H2612-H2618.	3.2	58
11	Alteration of humoral and peripheral vascular responses during graded exercise in heart failure. Journal of Applied Physiology, 2001, 90, 55-61.	2.5	53
12	The pathophysiology of hypertensive acute heart failure. Heart, 2015, 101, 1861-1867.	2.9	53
13	Experimental Biology 2000 Symposium on Differential Control of Sympathetic Outflow DIFFERENTIAL PATTERNS OF SYMPATHETIC RESPONSES TO SELECTIVE STIMULATION OF NUCLEUS TRACTUS SOLITARIUS PURINERGIC RECEPTOR SUBTYPES. Clinical and Experimental Pharmacology and Physiology, 2001, 28, 120-124.	1.9	51
14	Modulation of cardiac output alters the mechanisms of the muscle metaboreflex pressor response. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H245-H250.	3.2	48
15	Carotid baroreflex pressor responses at rest and during exercise: cardiac output vs. regional vasoconstriction. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H642-H648.	3.2	47
16	Recent advances in exercise pressor reflex function in health and disease. Autonomic Neuroscience: Basic and Clinical, 2020, 228, 102698.	2.8	47
17	Altered reflex cardiovascular control during exercise in heart failure: animal studies. Experimental Physiology, 2006, 91, 73-77.	2.0	46
18	Altered muscle metaboreflex control of coronary blood flow and ventricular function in heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H1381-H1388.	3.2	45

DONAL S O'LEARY

#	Article	IF	CITATIONS
19	Muscle metaboreflex control of cardiac output and peripheral vasoconstriction exhibit different latencies. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H530-H537.	3.2	41
20	Role of cardiac output versus peripheral vasoconstriction in mediating muscle metaboreflex pressor responses: dynamic exercise versus postexercise muscle ischemia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 304, R657-R663.	1.8	38
21	Attenuated arterial baroreflex buffering of muscle metaboreflex in heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H2416-H2423.	3.2	36
22	Muscle metaboreflex-induced coronary vasoconstriction limits ventricular contractility during dynamic exercise in heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H1029-H1037.	3.2	36
23	Muscle metaboreflex-induced coronary vasoconstriction functionally limits increases in ventricular contractility. Journal of Applied Physiology, 2010, 109, 271-278.	2.5	34
24	Muscle metaboreflex-induced vasoconstriction in the ischemic active muscle is exaggerated in heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H11-H18.	3.2	33
25	Heart failure attenuates muscle metaboreflex control of ventricular contractility during dynamic exercise. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H2159-H2166.	3.2	31
26	Muscle metaboreflex attenuates spontaneous heart rate baroreflex sensitivity during dynamic exercise. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H2867-H2873.	3.2	28
27	Muscle metaboreflex activation during dynamic exercise evokes epinephrine release resulting in β ₂ -mediated vasodilation. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H524-H529.	3.2	28
28	Muscle metaboreflex control of coronary blood flow. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H526-H532.	3.2	26
29	Muscle metaboreflex-induced increases in cardiac sympathetic activity vasoconstrict the coronary vasculature. Journal of Applied Physiology, 2007, 103, 190-194.	2.5	26
30	Muscle metaboreflex activation during dynamic exercise vasoconstricts ischemic active skeletal muscle. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H2145-H2151.	3.2	26
31	NTS A2a purinoceptor activation elicits hindlimb vasodilation primarily via a β-adrenergic mechanism. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H1775-H1782.	3.2	24
32	Spontaneous baroreflex control of heart rate during exercise and muscle metaboreflex activation in heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H1929-H1936.	3.2	24
33	Heart failure alters the strength and mechanisms of arterial baroreflex pressor responses during dynamic exercise. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H1682-H1688.	3.2	23
34	Interaction between the muscle metaboreflex and the arterial baroreflex in control of arterial pressure and skeletal muscle blood flow. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H1268-H1276.	3.2	23
35	Point: The muscle metaboreflex does restore blood flow to contracting muscles. Journal of Applied Physiology, 2006, 100, 357-361.	2.5	20
36	Attenuated muscle metaboreflex-induced increases in cardiac function in hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H1548-H1554.	3.2	19

DONAL S O'LEARY

#	Article	IF	CITATIONS
37	Cardiovascular responses to exercise and muscle metaboreflex activation during the recovery from pacing-induced heart failure. Journal of Applied Physiology, 2006, 101, 14-22.	2.5	18
38	Exaggerated coronary vasoconstriction limits muscle metaboreflex-induced increases in ventricular performance in hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H68-H79.	3.2	18
39	Altered arterial baroreflex-muscle metaboreflex interaction in heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H1383-H1392.	3.2	18
40	Stimulation of NTS A1 adenosine receptors evokes counteracting effects on hindlimb vasculature. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H2536-H2542.	3.2	16
41	Dynamic cardiac output regulation at rest, during exercise, and muscle metaboreflex activation: impact of congestive heart failure. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 303, R757-R768.	1.8	13
42	Muscle metaboreflex-induced increases in effective arterial elastance: effect of heart failure. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 319, R1-R10.	1.8	12
43	Muscle metaboreflex-induced central blood volume mobilization in heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H1047-H1052.	3.2	11
44	Chronic ablation of TRPV1-sensitive skeletal muscle afferents attenuates the muscle metaboreflex. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 321, R385-R395.	1.8	11
45	Endothelin-1 in hypertension in the baroreflex-intact SHR: a role independent from vasopressin release. American Journal of Physiology - Endocrinology and Metabolism, 2000, 279, E18-E24.	3.5	10
46	NTS adenosine A _{2a} receptors inhibit the cardiopulmonary chemoreflex control of regional sympathetic outputs via a GABAergic mechanism. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H185-H197.	3.2	10
47	Attenuated muscle metaboreflex-induced pressor response during postexercise muscle ischemia in renovascular hypertension. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 308, R650-R658.	1.8	10
48	Ventricular contraction and relaxation rates during muscle metaboreflex activation in heart failure: are they coupled?. Experimental Physiology, 2021, 106, 401-411.	2.0	10
49	Mechanisms mediating NTS P2x receptor-evoked hypotension: cardiac output vs. total peripheral resistance. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H2198-H2203.	3.2	9
50	Dynamic control of maximal ventricular elastance via the baroreflex and force-frequency relation in awake dogs before and after pacing-induced heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H62-H69.	3.2	9
51	Neural and humoral control of regional vascular beds via A ₁ adenosine receptors located in the nucleus tractus solitarii. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 300, R744-R755.	1.8	9
52	Nucleus tractus solitarii A2a adenosine receptors inhibit cardiopulmonary chemoreflex control of sympathetic outputs. Autonomic Neuroscience: Basic and Clinical, 2014, 180, 32-42.	2.8	7
53	Stimulation of the cardiopulmonary baroreflex enhances ventricular contractility in awake dogs: a mathematical analysis study. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R455-R464.	1.8	7
54	Severe hemorrhage attenuates cardiopulmonary chemoreflex control of regional sympathetic outputs via NTS adenosine receptors. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H904-H909.	3.2	6

DONAL S O'LEARY

#	Article	IF	CITATIONS
55	Neural Control of Cardiovascular Function During Exercise in Hypertension. Frontiers in Physiology, 2018, 9, 1829.	2.8	6
56	Arterial Baroreflex Inhibits Muscle Metaboreflex Induced Increases in Effective Arterial Elastance: Implications for Ventricular-Vascular Coupling. Frontiers in Physiology, 2022, 13, 841076.	2.8	5
57	Ventricular-Vascular Uncoupling in Heart Failure: Effects of Arterial Baroreflex-Induced Sympathoexcitation at Rest and During Exercise. Frontiers in Physiology, 2022, 13, 835951.	2.8	5
58	Development of a decerebrate model for investigating mechanisms mediating viscero-sympathetic reflexes in the spinalized rat. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H1332-H1340.	3.2	4
59	Spinal Reflex Control of Arterial Blood Pressure: The Role of TRP Channels and Their Endogenous Eicosanoid Modulators. Frontiers in Physiology, 2022, 13, 838175.	2.8	4
60	Role of endothelial nitric oxide in control of peripheral vascular conductance during muscle metaboreflex activation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 313, R29-R34.	1.8	3
61	Colocalization of A _{2a} but not A ₁ adenosine receptors with GABA-ergic neurons in cardiopulmonary chemoreflex network in the caudal nucleus of the solitary tract. Physiological Reports, 2018, 6, e13913.	1.7	3
62	Reply to "Letter to the editor: Applying the blood flow restriction pressure: the elephant in the room― American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H134-H135.	3.2	1
63	Purinergic receptor antagonism: A viable strategy for the management of autonomic dysreflexia?. Autonomic Neuroscience: Basic and Clinical, 2021, 230, 102741.	2.8	1
64	Activation of NTS A 1 Adenosine Receptors Differentially Resets Baroreflex Control of Adrenal (ASNA) and Renal (RSNA) Sympathetic Nerve Activity. FASEB Journal, 2007, 21, A466.	0.5	1
65	Muscle metaboreflexâ€induced increases in ventricular performance are limited in hypertension due to exaggerated coronary vasoconstriction. FASEB Journal, 2013, 27, 1118.16.	0.5	1
66	Severe hemorrhage attenuates cardiopulmonary chemoreflex (CCR) control of renal and adrenal sympathetic nerves via adenosine operating in the nucleus of the solitary tract (NTS). FASEB Journal, 2013, 27, 1118.13.	0.5	1
67	Mechanisms Mediating Heart Rate (HR) Responses Evoked by Activation of NTS A 1 Adenosine Receptors. FASEB Journal, 2010, 24, 624.6.	0.5	0
68	Activation of NTS A 2a Adenosine Receptors Impairs Cardiopulmonary Chemoreflex Control of Renal (RSNA), Adrenal (ASNA) and Lumbar (LSNA) Sympathetic Nerve Activity. FASEB Journal, 2010, 24, 624.11.	0.5	0
69	Pilot investigation of the cardiopulmonary baroreflex control of ventricular contractility. FASEB Journal, 2011, 25, 645.10.	0.5	0
70	Role of cardiac output vs. peripheral vasoconstriction in mediating the muscle metaboreflex pressor response during dynamic exercise and postâ€exercise muscle ischemia. FASEB Journal, 2012, 26, 1091.45.	0.5	0
71	Immunohistochemistry confirms the functional evidence that the cardiopulmonary chemoreflex (CCR) pathways in the caudal nucleus of the solitary tract (cNTS) are directly inhibited by A 1 adenosine receptors and indirectly inhibited by A 2a receptors via GABA release. FASEB Journal, 2013, 27, 1118.15.	0.5	0
72	Hypertension impairs spontaneous baroreflex heart rate control during exercise and muscle metaboreflex activation (1132.9). FASEB Journal, 2014, 28, 1132.9.	0.5	0