Mikhail F Alexeyev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9586264/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oxidative stress induces degradation of mitochondrial DNA. Nucleic Acids Research, 2009, 37, 2539-2548.	6.5	426
2	The Maintenance of Mitochondrial DNA IntegrityCritical Analysis and Update. Cold Spring Harbor Perspectives in Biology, 2013, 5, a012641-a012641.	2.3	341
3	Perinuclear Mitochondrial Clustering Creates an Oxidant-Rich Nuclear Domain Required for Hypoxia-Induced Transcription. Science Signaling, 2012, 5, ra47.	1.6	285
4	Is there more to aging than mitochondrial DNA and reactive oxygen species?. FEBS Journal, 2009, 276, 5768-5787.	2.2	153
5	Mitochondrial DNA and aging. Clinical Science, 2004, 107, 355-364.	1.8	123
6	Mitochondrial DNA damage triggers mitochondrial dysfunction and apoptosis in oxidant-challenged lung endothelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 288, L530-L535.	1.3	86
7	Aging: A mitochondrial DNA perspective, critical analysis and an update. World Journal of Experimental Medicine, 2014, 4, 46.	0.9	64
8	Mitochondrial DNA: A disposable genome?. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1805-1809.	1.8	61
9	Persistent damage induces mitochondrial DNA degradation. DNA Repair, 2013, 12, 488-499.	1.3	52
10	Mitochondrial transcription in mammalian cells. Frontiers in Bioscience - Landmark, 2017, 22, 835-853.	3.0	43
11	Endonuclease III and endonuclease VIII conditionally targeted into mitochondria enhance mitochondrial DNA repair and cell survival following oxidative stress. Nucleic Acids Research, 2004, 32, 3240-3247.	6.5	41
12	TRPC4 Inactivation Confers a Survival Benefit in Severe Pulmonary Arterial Hypertension. American Journal of Pathology, 2013, 183, 1779-1788.	1.9	39
13	The expression of Exonuclease III from E. coli in mitochondria of breast cancer cells diminishes mitochondrial DNA repair capacity and cell survival after oxidative stress. DNA Repair, 2003, 2, 471-482.	1.3	38
14	A retro-lentiviral system for doxycycline-inducible gene expression and gene knockdown in cells with limited proliferative capacity. Molecular Biology Reports, 2010, 37, 1987-1991.	1.0	36
15	Endothelial hyperpermeability in severe pulmonary arterial hypertension: role of store-operated calcium entry. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 311, L560-L569.	1.3	36
16	Mitochondrial DNA Ligase Is Dispensable for the Viability of Cultured Cells but Essential for mtDNA Maintenance. Journal of Biological Chemistry, 2013, 288, 26594-26605.	1.6	32
17	<i>Pseudomonas aeruginosa</i> exoenzymes U and Y induce a transmissible endothelial proteinopathy. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L337-L353. -	1.3	32
18	Pseudomonas aeruginosa infection liberates transmissible, cytotoxic prion amyloids. FASEB Journal, 2017, 31, 2785-2796.	0.2	31

MIKHAIL F ALEXEYEV

#	Article	IF	CITATIONS
19	Limited predictive value of TFAM in mitochondrial biogenesis. Mitochondrion, 2019, 49, 156-165.	1.6	29
20	Methods for Efficient Elimination of Mitochondrial DNA from Cultured Cells. PLoS ONE, 2016, 11, e0154684.	1.1	27
21	Virulent <i>Pseudomonas aeruginosa</i> infection converts antimicrobial amyloids into cytotoxic prions. FASEB Journal, 2020, 34, 9156-9179.	0.2	26
22	Sodium entry through endothelial store-operated calcium entry channels: regulation by Orai1. American Journal of Physiology - Cell Physiology, 2015, 308, C277-C288.	2.1	20
23	The "fast―and the "slow―modes of mitochondrial DNA degradation. Mitochondrial DNA, 2016, 27, 490-498.	0.6	19
24	Carbonic anhydrase IX is a critical determinant of pulmonary microvascular endothelial cell pH regulation and angiogenesis during acidosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L41-L51.	1.3	19
25	Exoenzyme Y Contributes to End-Organ Dysfunction Caused by Pseudomonas aeruginosa Pneumonia in Critically Ill Patients: An Exploratory Study. Toxins, 2020, 12, 369.	1.5	16
26	Extrinsic acidosis suppresses glycolysis and migration while increasing network formation in pulmonary microvascular endothelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 317, L188-L201.	1.3	15
27	A method for mutagenesis of mouse mtDNA and a resource of mouse mtDNA mutations for modeling human pathological conditions. Nucleic Acids Research, 2015, 43, e62-e62.	6.5	14
28	N-cadherin coordinates AMP kinase-mediated lung vascular repair. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L71-L85.	1.3	14
29	The efficiency of the translesion synthesis across abasic sites by mitochondrial DNA polymerase is low in mitochondria of 3T3 cells. Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 2016, 27, 4390-4396.	0.7	14
30	S100A6 is a positive regulator of PPP5Câ€FKBP51â€dependent regulation of endothelial calcium signaling. FASEB Journal, 2020, 34, 3179-3196.	0.2	13
31	Exoenzyme Y induces extracellular active caspase-7 accumulation independent from apoptosis: modulation of transmissible cytotoxicity. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L380-L390.	1.3	13
32	α _{1G} T-type calcium channel determines the angiogenic potential of pulmonary microvascular endothelial cells. American Journal of Physiology - Cell Physiology, 2019, 316, C353-C364.	2.1	12
33	Elimination of Mitochondrial DNA from Mammalian Cells. Current Protocols in Cell Biology, 2018, 78, 20.11.1-20.11.14.	2.3	11
34	Mutations in the passenger polypeptide can affect its partitioning between mitochondria and cytoplasm. Molecular Biology Reports, 2008, 35, 215-223.	1.0	10
35	Mitochondrial DNA: the common confusions. Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 2020, 31, 45-47.	0.7	9
36	Protective role of FKBP51Âin calcium entryâ€induced endothelial barrier disruption. Pulmonary Circulation, 2018, 8, 1-15.	0.8	6

MIKHAIL F ALEXEYEV

#	Article	IF	CITATIONS
37	Presequence-Independent Mitochondrial Import of DNA Ligase Facilitates Establishment of Cell Lines with Reduced mtDNA Copy Number. PLoS ONE, 2016, 11, e0152705.	1.1	6
38	Quantification of mtDNA content in cultured cells by direct droplet digital PCR. Mitochondrion, 2021, 61, 102-113.	1.6	5
39	ExoU Induces Lung Endothelial Cell Damage and Activates Pro-Inflammatory Caspase-1 during Pseudomonas aeruginosa Infection. Toxins, 2022, 14, 152.	1.5	5
40	Mitochondrial DNA: Consensuses and Controversies. Dna, 2022, 2, 131-148.	0.4	5
41	A Method for In Situ Reverse Genetic Analysis of Proteins Involved mtDNA Replication. Cells, 2022, 11, 2168.	1.8	5
42	Development of an endothelial cell-restricted transgenic reporter rat: a resource for physiological studies of vascular biology. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 319, H349-H358.	1.5	4
43	Impact of Na+ permeation on collective migration of pulmonary arterial endothelial cells. PLoS ONE, 2021, 16, e0250095.	1.1	4
44	Carbonic Anhydrase IX and Hypoxia Promote Rat Pulmonary Endothelial Cell Survival during Infection. American Journal of Respiratory Cell and Molecular Biology, 2021, 65, 630-645.	1.4	3
45	On separation and coding capacity of mtDNA strands. Protein Science, 2020, 29, 1070-1070.	3.1	2
46	On resolving the molecular identity of the endothelial cell nucleosome assembly protein. FASEB Journal, 2007, 21, A1433.	0.2	2
47	Unusual mtDNA Control Region Length Heteroplasmy in the COS-7 Cell Line. Genes, 2020, 11, 607.	1.0	1
48	Oxidative stress induces degradation of mitochondrial DNA. FASEB Journal, 2009, 23, 836.20.	0.2	1
49	Carbonic anhydrase IX proteoglycan-like and intracellular domains mediate pulmonary microvascular endothelial cell repair and angiogenesis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 323, L48-L57.	1.3	1
50	The mitochondrial genome sequence of the BS-C-1 cell line is at odds with the reported derivation from Cercopithecus aethiops. Mitochondrial DNA Part B: Resources, 2020, 5, 3492-3494.	0.2	0
51	TdTomato Transgenic Reporter Rat Reveals Endothelialâ€5pecific Changes in Progression of PAH. FASEB Journal, 2021, 35, .	0.2	0
52	Disruption of the endothelial ISOC causes phenotypic changes in pulmonary artery endothelial cells. FASEB Journal, 2007, 21, .	0.2	0
53	Activation of a chimeric soluble adenylyl cyclase reorganizes microtubules near the cell periphery sufficient to disrupt the endothelial cell barrier. FASEB Journal, 2007, 21, A1432.	0.2	0
54	Cyclic AMP Phosphodiesterase 4D4 Expression in Lung Endothelium is a Determinant of Cell Phenotype. FASEB Journal, 2007, 21, A1433.	0.2	0

MIKHAIL F ALEXEYEV

#	Article	IF	CITATIONS
55	Activation of a chimeric soluble adenylyl cyclase induces endothelial cell gap formation without disrupting the cortical actin rim. FASEB Journal, 2007, 21, A862.	0.2	0
56	Nucleosome Assembly Protein 1 (NAPâ€1) determines the progenitor status of endothelial cells. FASEB Journal, 2008, 22, 1178.12.	0.2	0
57	AMPâ€activated kinase α1 (AMPKα1) promotes cell ell adhesion in endothelial barrier repair. FASEB Journal, 2011, 25, .	0.2	0
58	α 1G (Ca V 3.1) Tâ€ŧype calcium channel controls NOS3 activation in pulmonary microvascular endothelial cells. FASEB Journal, 2013, 27, 724.6.	0.2	0