
Rafael Bilbao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9586223/publications.pdf Version: 2024-02-01

RAFAEL RUBAO

#	Article	IF	CITATIONS
1	Hydrogen Production by Steam Reforming of Bio-Oil Using Coprecipitated Niâ^'Al Catalysts. Acetic Acid as a Model Compound. Energy & Fuels, 2005, 19, 1133-1142.	5.1	160
2	Adsorption of Different VOC onto Soil Minerals from Gas Phase:  Influence of Mineral, Type of VOC, and Air Humidity. Environmental Science & Technology, 1998, 32, 1079-1084.	10.0	94
3	Toluene steam reforming using coprecipitated Ni/Al catalysts modified with lanthanum or cobalt. Chemical Engineering Journal, 2008, 137, 587-597.	12.7	88
4	Hydrogen Production by Catalytic Steam Reforming of Acetol, a Model Compound of Bio-Oil. Industrial & Engineering Chemistry Research, 2007, 46, 2399-2406.	3.7	80
5	Effect of different concentration levels of CO2 and H2O on the oxidation of CO: Experiments and modeling. Proceedings of the Combustion Institute, 2011, 33, 317-323.	3.9	80
6	Quantification of polycyclic aromatic hydrocarbons (PAHs) found in gas and particle phases from pyrolytic processes using gas chromatography–mass spectrometry (GC–MS). Fuel, 2013, 107, 246-253.	6.4	72
7	Oxidation of Dimethyl Ether and its Interaction with Nitrogen Oxides. Israel Journal of Chemistry, 1999, 39, 73-86.	2.3	63
8	Polycyclic Aromatic Hydrocarbon (PAH) and Soot Formation in the Pyrolysis of Acetylene and Ethylene: Effect of the Reaction Temperature. Energy & Fuels, 2012, 26, 4823-4829.	5.1	63
9	Influence of Catalyst Weight/Biomass Flow Rate Ratio on Gas Production in the Catalytic Pyrolysis of Pine Sawdust at Low Temperatures. Industrial & Engineering Chemistry Research, 1998, 37, 3812-3819.	3.7	40
10	Novel aspects in the pyrolysis and oxidation of 2,5-dimethylfuran. Proceedings of the Combustion Institute, 2015, 35, 1717-1725.	3.9	37
11	Hydrodeoxygenation of Lignocellulosic Fast Pyrolysis Bio-Oil: Characterization of the Products and Effect of the Catalyst Loading Ratio. Energy & Fuels, 2019, 33, 4272-4286.	5.1	36
12	Oxidation of Acetyleneâ^'Ethanol Mixtures and Their Interaction with NO. Energy & Fuels, 2008, 22, 3814-3823.	5.1	35
13	Experimental Study of the Pyrolysis of NH ₃ under Flow Reactor Conditions. Energy & Fuels, 2021, 35, 7193-7200.	5.1	35
14	Impact of nitrogen oxides (NO, NO2, N2O) on the formation of soot. Combustion and Flame, 2014, 161, 280-287.	5.2	34
15	Dimethoxymethane Oxidation in a Flow Reactor. Combustion Science and Technology, 2016, 188, 719-729.	2.3	29
16	2-methylfuran pyrolysis: Gas-phase modelling and soot formation. Combustion and Flame, 2018, 188, 376-387.	5.2	29
17	Influence of the Temperature and 2,5-Dimethylfuran Concentration on Its Sooting Tendency. Combustion Science and Technology, 2016, 188, 651-666.	2.3	25
18	A study of dimethyl carbonate conversion and its impact to minimize soot and NO emissions. Proceedings of the Combustion Institute, 2017, 36, 3985-3993.	3.9	24

RAFAEL BILBAO

#	Article	IF	CITATIONS
19	Gas and soot formed in the dimethoxymethane pyrolysis. Soot characterization. Fuel Processing Technology, 2018, 179, 369-377.	7.2	19
20	Experimental and kinetic modeling study of the oxy-fuel oxidation of natural gas, CH4 and C2H6. Fuel, 2015, 160, 404-412.	6.4	18
21	Dilution and Stoichiometry Effects on Gas Reburning:Â An Experimental Study. Industrial & Engineering Chemistry Research, 1997, 36, 2440-2444.	3.7	17
22	Thermodynamic and Physical Property Estimation of Compounds Derived from the Fast Pyrolysis of Lignocellulosic Materials. Energy & amp; Fuels, 2021, 35, 17114-17137.	5.1	15
23	2-methylfuran Oxidation in the Absence and Presence of NO. Flow, Turbulence and Combustion, 2016, 96, 343-362.	2.6	12
24	Ethanol as a Fuel Additive: High-Pressure Oxidation of Its Mixtures with Acetylene. Energy & Fuels, 2018, 32, 10078-10087.	5.1	10
25	An experimental and modeling study of the influence of flue gases recirculated on ethylene conversion. Combustion and Flame, 2014, 161, 2288-2296.	5.2	8
26	Reactivity and Physicochemical Properties of the Soot Produced in the Pyrolysis of 2,5-Dimethylfuran and 2-Methylfuran. Energy & amp; Fuels, 2019, 33, 9851-9858.	5.1	7
27	Effect of CO2 atmosphere and presence of NOx (NO and NO2) on the moist oxidation of CO. Fuel, 2019, 236, 615-621.	6.4	5
28	Joint quantification of PAH and oxy-PAH from standard reference materials (urban dust and diesel) Tj ETQq0 0 0 Analytical Chemistry, 2021, 101, 1649-1661.	rgBT /Over 3.3	lock 10 Tf 50 4
29	Experimental and simulation study of the high pressure oxidation of dimethyl carbonate. Fuel, 2022, 309, 122154.	6.4	2