Angela Millera

List of Publications by Citations

Source: https://exaly.com/author-pdf/9585455/angela-millera-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

93
papers

2,444
citations

44
g-index

94
ext. papers

2,698
ext. citations

4.7
avg, IF

L-index

#	Paper	IF	Citations
93	Pyrolysis of eucalyptus at different heating rates: studies of char characterization and oxidative reactivity. <i>Journal of Analytical and Applied Pyrolysis</i> , 2005 , 74, 307-314	6	143
92	Characterization of Biomass Chars Formed under Different Devolatilization Conditions: Differences between Rice Husk and Eucalyptus. <i>Energy & Double Supply </i>	4.1	129
91	HCN oxidation in an O2/CO2 atmosphere: An experimental and kinetic modeling study. <i>Combustion and Flame</i> , 2010 , 157, 267-276	5.3	91
90	Nitric Oxide Reduction by Non-hydrocarbon Fuels. Implications for Reburning with Gasification Gases. <i>Energy & Energy & </i>	4.1	77
89	Soot formation from C2H2 and C2H4 pyrolysis at different temperatures. <i>Journal of Analytical and Applied Pyrolysis</i> , 2007 , 79, 244-251	6	73
88	Formation of PAH and soot during acetylene pyrolysis at different gas residence times and reaction temperatures. <i>Energy</i> , 2012 , 43, 30-36	7.9	65
87	Quantification of polycyclic aromatic hydrocarbons (PAHs) found in gas and particle phases from pyrolytic processes using gas chromatographythass spectrometry (GCMS). <i>Fuel</i> , 2013 , 107, 246-253	7.1	61
86	Gas and soot products formed in the pyrolysis of acetylene mixed with methanol, ethanol, isopropanol or n-butanol. <i>Energy</i> , 2012 , 43, 37-46	7.9	57
85	Influence of the Temperature and Oxygen Concentration on NOx Reduction In The Natural Gas Reburning Process. <i>Industrial & Engineering Chemistry Research</i> , 1994 , 33, 2846-2852	3.9	54
84	Polycyclic Aromatic Hydrocarbon (PAH) and Soot Formation in the Pyrolysis of Acetylene and Ethylene: Effect of the Reaction Temperature. <i>Energy & Energy & </i>	4.1	53
83	Polycyclic aromatic hydrocarbons (PAH), soot and light gases formed in the pyrolysis of acetylene at different temperatures: Effect of fuel concentration. <i>Journal of Analytical and Applied Pyrolysis</i> , 2013 , 103, 126-133	6	50
82	An experimental study of the soot formed in the pyrolysis of acetylene. <i>Journal of Analytical and Applied Pyrolysis</i> , 2005 , 74, 486-493	6	50
81	Thermal decomposition of lignocellulosic materials: influence of the chemical composition. <i>Thermochimica Acta</i> , 1989 , 143, 149-159	2.9	50
80	Kinetics of thermal decomposition of cellulose. <i>Thermochimica Acta</i> , 1987 , 120, 121-131	2.9	49
79	Temperature profiles and weight loss in the thermal decomposition of large spherical wood particles. <i>Industrial & Engineering Chemistry Research</i> , 1993 , 32, 1811-1817	3.9	48
78	An experimental and modeling study of the oxidation of acetylene in a flow reactor. <i>Combustion and Flame</i> , 2008 , 152, 377-386	5.3	47
77	Modeling Low-Temperature Gas Reburning. NOx Reduction Potential and Effects of Mixing. <i>Energy & Energy Fuels</i> , 1998 , 12, 329-338	4.1	43

76	Evaluation of the use of different hydrocarbon fuels for gas reburning. Fuel, 1997, 76, 1401-1407	7.1	42	
75	SO2 effects on CO oxidation in a CO2 atmosphere, characteristic of oxy-fuel conditions. <i>Combustion and Flame</i> , 2011 , 158, 48-56	5.3	41	
74	Gas and soot products formed in the pyrolysis of acetylene\textstand than ol blends under flow reactor conditions. <i>Fuel Processing Technology</i> , 2009 , 90, 496-503	7.2	40	
73	Pyrolysis of Ethanol: Gas and Soot Products Formed. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 4412-4419	3.9	39	
72	Influence of Different Operation Conditions on Soot Formation from C2H2 Pyrolysis. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 7550-7560	3.9	39	
71	Experimental Study of the Influence of the Operating Variables on Natural Gas Reburning Efficiency. <i>Industrial & Efficiency amp; Engineering Chemistry Research</i> , 1995 , 34, 4531-4539	3.9	38	
70	Kinetics of weight loss by thermal decomposition of xylan and lignin. Influence of experimental conditions. <i>Thermochimica Acta</i> , 1989 , 143, 137-148	2.9	38	
69	Interactions between Nitric Oxide and Urea under Flow Reactor Conditions. <i>Energy & amp; Fuels</i> , 1998 , 12, 1001-1007	4.1	37	
68	High Pressure Oxidation of Dimethoxymethane. Energy & amp; Fuels, 2015, 29, 3507-3517	4.1	34	
67	Novel aspects in the pyrolysis and oxidation of 2,5-dimethylfuran. <i>Proceedings of the Combustion Institute</i> , 2015 , 35, 1717-1725	5.9	34	
66	An experimental parametric study of gas reburning under conditions of interest for oxy-fuel combustion. <i>Fuel Processing Technology</i> , 2011 , 92, 582-589	7.2	32	
65	Oxidation of Acetylene E thanol Mixtures and Their Interaction with NO. <i>Energy & Description</i> 22, 3814-3823	4.1	32	
64	Kinetics of weight loss by thermal decomposition of different lignocellulosic materials. Relation between the results obtained from isothermal and dynamic experiments. <i>Thermochimica Acta</i> , 1990 , 165, 103-112	2.9	32	
63	Sooting propensity of dimethyl carbonate, soot reactivity and characterization. <i>Fuel</i> , 2016 , 183, 64-72	7.1	31	
62	CS2 and COS conversion under different combustion conditions. <i>Combustion and Flame</i> , 2015 , 162, 2119	-2 3127	30	
61	Experimental and computational study of methane mixtures pyrolysis in a flow reactor under atmospheric pressure. <i>Energy</i> , 2012 , 43, 103-110	7.9	30	
60	Theoretical study of the influence of mixing in the SNCR process. Comparison with pilot scale data. <i>Chemical Engineering Science</i> , 2000 , 55, 5321-5332	4.4	26	
59	Dimethoxymethane Oxidation in a Flow Reactor. <i>Combustion Science and Technology</i> , 2016 , 188, 719-729	9 1.5	25	

58	Experimental study on the effect of different CO2 concentrations on soot and gas products from ethylene thermal decomposition. <i>Fuel</i> , 2012 , 91, 307-312	7.1	25
57	Experimental and Kinetic Study at High Temperatures of the NO Reduction over Eucalyptus Char Produced at Different Heating Rates. <i>Energy & Energy </i>	4.1	25
56	Influence of water vapor addition on soot oxidation at high temperature. Energy, 2012, 43, 55-63	7.9	24
55	High-Pressure Study of Methyl Formate Oxidation and Its Interaction with NO. <i>Energy & amp; Fuels</i> , 2014 , 28, 6107-6115	4.1	23
54	2-methylfuran pyrolysis: Gas-phase modelling and soot formation. <i>Combustion and Flame</i> , 2018 , 188, 376-387	5.3	22
53	Kinetics of thermal decomposition of cellulose. <i>Thermochimica Acta</i> , 1987 , 120, 133-141	2.9	22
52	Influence of the Temperature and 2,5-Dimethylfuran Concentration on Its Sooting Tendency. <i>Combustion Science and Technology</i> , 2016 , 188, 651-666	1.5	22
51	Effect of Ethanol, Dimethylether, and Oxygen, When Mixed with Acetylene, on the Formation of Soot and Gas Products. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 6772-6779	3.9	21
50	Simplified Kinetic Model of the Chemistry in the Reburning Zone Using Natural Gas. <i>Industrial & Engineering Chemistry Research</i> , 1995 , 34, 4540-4548	3.9	21
49	Impact of nitrogen oxides (NO, NO2, N2O) on the formation of soot. <i>Combustion and Flame</i> , 2014 , 161, 280-287	5.3	19
48	A STUDY OF PYRROLE OXIDATION UNDER FLOW REACTOR CONDITIONS. <i>Combustion Science and Technology</i> , 2001 , 172, 123-139	1.5	19
47	Interaction between 2,5-Dimethylfuran and Nitric Oxide: Experimental and Modeling Study. <i>Energy & Energy Fuels</i> , 2014 , 28, 4193-4198	4.1	18
46	Influence of the concentration of ethanol and the interaction of compounds in the pyrolysis of acetylene and ethanol mixtures. <i>Fuel</i> , 2011 , 90, 844-849	7.1	18
45	Effect of Recirculation Gases on Soot Formed from Ethylene Pyrolysis. <i>Combustion Science and Technology</i> , 2012 , 184, 980-994	1.5	18
44	Impact of New Findings Concerning Urea Thermal Decomposition on the Modeling of the Urea-SNCR Process. <i>Energy & Documents</i> 2000, 14, 509-510	4.1	18
43	Effect of operating conditions on NO reduction by acetyleneBthanol mixtures. <i>Fuel Processing Technology</i> , 2010 , 91, 1204-1211	7.2	17
42	Dilution and Stoichiometry Effects on Gas Reburning: An Experimental Study. <i>Industrial & Engineering Chemistry Research</i> , 1997 , 36, 2440-2444	3.9	17
41	Influence of the Oxygen Presence on Polycyclic Aromatic Hydrocarbon (PAH) Formation from Acetylene Pyrolysis under Sooting Conditions. <i>Energy & Damp; Fuels</i> , 2013 , 27, 7081-7088	4.1	16

(2016-2018)

40	Gas and soot formed in the dimethoxymethane pyrolysis. Soot characterization. <i>Fuel Processing Technology</i> , 2018 , 179, 369-377	7.2	15
39	Oxidation of methyl formate and its interaction with nitric oxide. <i>Combustion and Flame</i> , 2013 , 160, 853	3- § .60	15
38	A study of dimethyl carbonate conversion and its impact to minimize soot and NO emissions. <i>Proceedings of the Combustion Institute</i> , 2017 , 36, 3985-3993	5.9	15
37	Oxidation of Acetylene Soot: Influence of Oxygen Concentration. <i>Energy & Damp; Fuels</i> , 2007 , 21, 3208-3	21451	15
36	Experimental and Kinetic Study of the Interaction of a Commercial Soot with NO at High Temperature. <i>Combustion Science and Technology</i> , 2012 , 184, 1191-1206	1.5	14
35	An Augmented Reduced Mechanism for Methane Combustion. <i>Energy & amp; Fuels</i> , 2004 , 18, 619-627	4.1	14
34	Experimental study and modelling of the burnout zone in the natural gas reburning process. <i>Chemical Engineering Science</i> , 1995 , 50, 2579-2587	4.4	14
33	Impact of SO2 on the formation of soot from ethylene pyrolysis. <i>Fuel</i> , 2015 , 159, 550-558	7.1	13
32	Interactions of HCN with NO in a CO2 Atmosphere Representative of Oxy-fuel Combustion Conditions. <i>Energy & Energy & Ene</i>	4.1	13
31	Acetylene soot reaction with NO in the presence of CO. Journal of Hazardous Materials, 2009, 166, 1389	9-<u>94</u>8	13
30	Influence of the NO Concentration and the Presence of Oxygen in the Acetylene Soot Reaction with NO. <i>Energy & Energy & </i>	4.1	11
30		4.1 2.9	11
	with NO. Energy & Down (22, 284-290) Thermal decomposition of lignocellulosic materials: comparison of the results obtained in different		
29	with NO. Energy & Damp; Fuels, 2008, 22, 284-290 Thermal decomposition of lignocellulosic materials: comparison of the results obtained in different experimental systems. Thermochimica Acta, 1991, 190, 163-173 Product distribution in the flash pyrolysis of lignocellulosic materials in a fluidized bed. Fuel, 1988,	2.9	11
29	with NO. Energy & Damp; Fuels, 2008, 22, 284-290 Thermal decomposition of lignocellulosic materials: comparison of the results obtained in different experimental systems. Thermochimica Acta, 1991, 190, 163-173 Product distribution in the flash pyrolysis of lignocellulosic materials in a fluidized bed. Fuel, 1988, 67, 1586-1588	2.9	11
29 28 27	with NO. Energy & Damp; Fuels, 2008, 22, 284-290 Thermal decomposition of lignocellulosic materials: comparison of the results obtained in different experimental systems. Thermochimica Acta, 1991, 190, 163-173 Product distribution in the flash pyrolysis of lignocellulosic materials in a fluidized bed. Fuel, 1988, 67, 1586-1588 Characterization of Soot. Green Energy and Technology, 2013, 333-362 Oxidation Kinetics of Eucalyptus Chars Produced at Low and High Heating Rates. Energy & Damp;	2.9 7.1 0.6	11 11 11
29 28 27 26	with NO. Energy & Damp; Fuels, 2008, 22, 284-290 Thermal decomposition of lignocellulosic materials: comparison of the results obtained in different experimental systems. Thermochimica Acta, 1991, 190, 163-173 Product distribution in the flash pyrolysis of lignocellulosic materials in a fluidized bed. Fuel, 1988, 67, 1586-1588 Characterization of Soot. Green Energy and Technology, 2013, 333-362 Oxidation Kinetics of Eucalyptus Chars Produced at Low and High Heating Rates. Energy & Damp; Fuels, 2008, 22, 2084-2090 Influence of Reactant Mixing in a Laminar Flow Reactor: The Case of Gas Reburning. 1.	2.9 7.1 0.6	11 11 11 10

22	Influence of dimethyl ether addition on the oxidation of acetylene in the absence and presence of NO. <i>Fuel</i> , 2016 , 183, 1-8	7.1	9
21	The inhibiting effect of NO addition on dimethyl ether high-pressure oxidation. <i>Combustion and Flame</i> , 2018 , 197, 1-10	5.3	9
20	CH3SH conversion in a tubular flow reactor. Experiments and kinetic modelling. <i>Combustion and Flame</i> , 2019 , 203, 23-30	5.3	8
19	An experimental and modeling study of the influence of flue gases recirculated on ethylene conversion. <i>Combustion and Flame</i> , 2014 , 161, 2288-2296	5.3	8
18	Thermal decomposition of a wood particle. Temperature profiles on the solid surface. <i>Thermochimica Acta</i> , 1992 , 197, 431-442	2.9	8
17	High-pressure ethanol oxidation and its interaction with NO. Fuel, 2018, 223, 394-400	7.1	7
16	Ethanol as a Fuel Additive: High-Pressure Oxidation of Its Mixtures with Acetylene. <i>Energy & Energy &</i>	4.1	6
15	Reactivity and Physicochemical Properties of the Soot Produced in the Pyrolysis of 2,5-Dimethylfuran and 2-Methylfuran. <i>Energy & Energy &</i>	4.1	6
14	Effect of the Presence of Hydrogen Sulfide on the Formation of Light Gases, Soot, and PAH during the Pyrolysis of Ethylene. <i>Energy & Damp; Fuels</i> , 2016 , 30, 9745-9751	4.1	6
13	Characterization and reactivity with NO/O2 of the soot formed in the pyrolysis of acetyleneBthanol mixtures. <i>Journal of Analytical and Applied Pyrolysis</i> , 2012 , 94, 68-74	6	5
12	Oxidation behavior of particulate matter sampled from the combustion zone of a domestic pellet-fired boiler. <i>Fuel Processing Technology</i> , 2013 , 116, 201-208	7.2	4
11	Effect of CO2 atmosphere and presence of NOx (NO and NO2) on the moist oxidation of CO. <i>Fuel</i> , 2019 , 236, 615-621	7.1	4
10	A Comparison of Acetylene Soot and Two Different Carbon Blacks: Reactivity to Oxygen and NO. <i>International Journal of Chemical Reactor Engineering</i> , 2007 , 5,	1.2	3
9	An Experimental and Computational Fluid Dynamics (CFD) Simulation Study of Reburning under Laboratory Turbulent Mixing Conditions. <i>Energy & Energy & Energy</i>	4.1	3
8	An Approach to the Analysis of Mixing in Reactive Systems. <i>Chemical Engineering and Technology</i> , 2002 , 25, 417-419	2	2
7	Experimental study and modeling of the influence of the inlet no concentration in the natural gas reburning process. <i>Coal Science and Technology</i> , 1995 , 24, 1771-1774		2
6	Joint quantification of PAH and oxy-PAH from standard reference materials (urban dust and diesel particulate matter) and diesel soot surrogate by GC-MS. <i>International Journal of Environmental Analytical Chemistry</i> , 2019 , 1-13	1.8	2
5	Influence of Reactant Mixing in a Laminar Flow Reactor: The Case of Gas Reburning. 2. Modelling Study. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 3528-3537	3.9	1

LIST OF PUBLICATIONS

4	Tubular Flow Reactors. <i>Green Energy and Technology</i> , 2013 , 211-230	0.6	1
3	Experimental and simulation study of the high pressure oxidation of dimethyl carbonate. <i>Fuel</i> , 2022 , 309, 122154	7.1	O
2	Angular and radial temperature profiles in the thermal decomposition of wood. <i>Thermochimica Acta</i> , 1992 , 200, 401-411	2.9	
1	Formation and Characterization of Polyaromatic Hydrocarbons. <i>Green Energy and Technology</i> , 2013 , 28	33-3.662	