
Sicheng Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9585269/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inhibition of TRPC3 channels by a novel pyrazole compound confers antiseizure effects. Epilepsia, 2022, 63, 1003-1015.	2.6	8
2	Modulation by 17,20S(OH)2pD of Fibrosis-Related Mediators in Dermal Fibroblast Lines from Healthy Donors and from Patients with Systemic Sclerosis. International Journal of Molecular Sciences, 2022, 23, 367.	1.8	7
3	Discovery of <i>N</i> -(3,4-Dimethylphenyl)-4-(4-isobutyrylphenyl)-2,3,3a,4,5,9b-hexahydrofuro[3,2- <i>c</i>]quinoline-8-sulfo as a Potent Dual MDM2/XIAP Inhibitor. Journal of Medicinal Chemistry, 2021, 64, 1930-1950.	namide	10
4	Non-Musculoskeletal Benefits of Vitamin D beyond the Musculoskeletal System. International Journal of Molecular Sciences, 2021, 22, 2128.	1.8	21
5	Efficient and selective catalytic hydroxylation of unsaturated plant oils: a novel method for producing anti-pathogens. BMC Chemistry, 2021, 15, 20.	1.6	4
6	Discovery of a Highly Selective and Potent TRPC3 Inhibitor with High Metabolic Stability and Low Toxicity. ACS Medicinal Chemistry Letters, 2021, 12, 572-578.	1.3	5
7	Recent Progress on Tubulin Inhibitors with Dual Targeting Capabilities for Cancer Therapy. Journal of Medicinal Chemistry, 2021, 64, 7963-7990.	2.9	69
8	Design, Synthesis, and Biological Evaluation of Stable Colchicine-Binding Site Tubulin Inhibitors 6-Aryl-2-benzoyl-pyridines as Potential Anticancer Agents. Journal of Medicinal Chemistry, 2021, 64, 12049-12074.	2.9	33
9	17,20S(OH)2pD Can Prevent the Development of Skin Fibrosis in the Bleomycin-Induced Scleroderma Mouse Model. International Journal of Molecular Sciences, 2021, 22, 8926.	1.8	8
10	Synthesis and biological evaluation of selective survivin inhibitors derived from the MX-106 hydroxyquinoline scaffold. European Journal of Medicinal Chemistry, 2021, 224, 113719.	2.6	4
11	1,25-Dihydroxyvitamin D3 and 20-Hydroxyvitamin D3 Upregulate LAIR-1 and Attenuate Collagen Induced Arthritis. International Journal of Molecular Sciences, 2021, 22, 13342.	1.8	9
12	Feasible Synthesis of a Bifuran-Based Monomer for Polymer Synthesis from a Hemicellulose-Derived Platform. Industrial & Engineering Chemistry Research, 2020, 59, 19876-19883.	1.8	12
13	Lewis Acid Promoted Aerobic Oxidative Coupling of Thiols with Phosphonates by Simple Nickel(II) Catalyst: Substrate Scope and Mechanistic Studies. Journal of Organic Chemistry, 2019, 84, 4179-4190.	1.7	39
14	Catalytic carbonylation of renewable furfural derived 5-bromofurfural to 5-formyl-2-furancarboxylic acid in oil/aqueous bi-phase system. Molecular Catalysis, 2019, 463, 94-98.	1.0	13
15	Synthesis of 2,5-furandicarboxylic acid by catalytic carbonylation of renewable furfural derived 5-bromofuroic acid. Molecular Catalysis, 2018, 455, 204-209.	1.0	23
16	Efficient Synthesis of 2,5-Furandicarboxylic Acid from Furfural Based Platform through Aqueous-Phase Carbonylation. ACS Sustainable Chemistry and Engineering, 2018, 6, 13192-13198.	3.2	22
17	Efficient Bimetallic Catalysis of Nitrile Hydration to Amides with a Simple Pd(OAc) ₂ /Lewis Acid Catalyst at Ambient Temperature. European Journal of Organic Chemistry, 2017, 2017, 1870-1875.	1.2	41
18	Transformation of Methyl Linoleate to its Conjugated Derivatives with Simple Pd(OAc) ₂ /Lewis Acid Catalyst. JAOCS, Journal of the American Oil Chemists' Society, 2017, 94, 1481-1489.	0.8	3

SICHENG ZHANG

#	Article	IF	Citations
19	Catalytic Synthesis of 2,5-Furandicarboxylic Acid from Furoic Acid: Transformation from C5 Platform to C6 Derivatives in Biomass Utilizations. ACS Sustainable Chemistry and Engineering, 2017, 5, 9360-9369.	3.2	39
20	Accessing the HMF Derivatives from Furfural Acetate through Oxidative Carbonylation. ChemistrySelect, 2017, 2, 7096-7099.	0.7	9
21	Transformation of Unsaturated Fatty Acids/Esters to Corresponding Keto Fatty Acids/Esters by Aerobic Oxidation with Pd(II)/Lewis Acid Catalyst. Journal of Agricultural and Food Chemistry, 2017, 65, 6912-6918.	2.4	8
22	Non-redox metal ion promoted oxidative coupling of indoles with olefins by the palladium(<scp>ii</scp>) acetate catalyst through dioxygen activation: experimental results with DFT calculations. Organic and Biomolecular Chemistry, 2016, 14, 4146-4157.	1.5	45
23	Nonredox Metal-Ion-Accelerated Olefin Isomerization by Palladium(II) Catalysts: Density Functional Theory (DFT) Calculations Supporting the Experimental Data. ACS Catalysis, 2016, 6, 4144-4148.	5.5	34