Malte Winnacker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/958502/publications.pdf

Version: 2024-02-01

414395 394390 1,229 31 19 32 citations g-index h-index papers 34 34 34 1383 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Biobased Polyamides: Recent Advances in Basic and Applied Research. Macromolecular Rapid Communications, 2016, 37, 1391-1413.	3.9	193
2	Recent Progress in Sustainable Polymers Obtained from Cyclic Terpenes: Synthesis, Properties, and Application Potential. ChemSusChem, 2015, 8, 2455-2471.	6.8	138
3	Poly(ester amide)s: recent insights into synthesis, stability and biomedical applications. Polymer Chemistry, 2016, 7, 7039-7046.	3.9	102
4	Pinenes: Abundant and Renewable Building Blocks for a Variety of Sustainable Polymers. Angewandte Chemie - International Edition, 2018, 57, 14362-14371.	13.8	96
5	Polyhydroxyalkanoates: Recent Advances in Their Synthesis and Applications. European Journal of Lipid Science and Technology, 2019, 121, 1900101.	1.5	71
6	Polyamides and their functionalization: recent concepts for their applications as biomaterials. Biomaterials Science, 2017, 5, 1230-1235.	5.4	70
7	Artificial Genetic Sets Composed of Sizeâ€Expanded Base Pairs. Angewandte Chemie - International Edition, 2013, 52, 12498-12508.	13.8	57
8	Sustainable terpene-based polyamides <i>via</i> anionic polymerization of a pinene-derived lactam. Chemical Communications, 2018, 54, 841-844.	4.1	49
9	Biobased chiral semi-crystalline or amorphous high-performance polyamides and their scalable stereoselective synthesis. Nature Communications, 2020, 11, 509.	12.8	47
10	Synthesis of Novel Sustainable Oligoamides Via Ringâ€Opening Polymerization of Lactams Based on (â^')â€Menthone. Macromolecular Chemistry and Physics, 2014, 215, 1654-1660.	2.2	39
11	Sustainable Chiral Polyamides with High Melting Temperature via Enhanced Anionic Polymerization of a Menthone-Derived Lactam. Macromolecular Rapid Communications, 2016, 37, 851-857.	3.9	39
12	Sustainable, Stereoregular, and Optically Active Polyamides via Cationic Polymerization of ε-Lactams Derived from the Terpene β-Pinene. Macromolecular Rapid Communications, 2017, 38, 1600787.	3.9	35
13	New Insights into the Ringâ€Opening Polymerization of βâ€Butyrolactone Catalyzed by Chromium(III) Salphen Complexes. ChemCatChem, 2015, 7, 3963-3971.	3.7	34
14	Polyamide/PEG Blends as Biocompatible Biomaterials for the Convenient Regulation of Cell Adhesion and Growth. Macromolecular Rapid Communications, 2019, 40, e1900091.	3.9	33
15	New Bioâ€Polyamides from Terpenes: αâ€Pinene and (+)â€3â€Carene as Valuable Resources for Lactam Production. Macromolecular Rapid Communications, 2019, 40, e1800903.	3.9	28
16	New insights into synthesis and oligomerization of $\hat{l}\mu$ -lactams derived from the terpenoid ketone (\hat{a}^{-2})-menthone. RSC Advances, 2015, 5, 77699-77705.	3.6	25
17	Sustainable Myrcene-Based Elastomers via a Convenient Anionic Polymerization. Polymers, 2021, 13, 838.	4.5	24
18	Copolymers of polyhydroxyalkanoates and polyethylene glycols: recent advancements with biological and medical significance. Polymer International, 2017, 66, 497-503.	3.1	23

#	Article	IF	CITATIONS
19	Superhydrophobic Silicon Nanocrystal–Silica Aerogel Hybrid Materials: Synthesis, Properties, and Sensing Application. Langmuir, 2018, 34, 4888-4896.	3.5	23
20	Sustainable Polyesteramides and Copolyamides: Insights into the Copolymerization Behavior of Terpeneâ€Based Lactams. Macromolecular Chemistry and Physics, 2020, 221, 2000110.	2.2	16
21	Stereoregular Polymerization of Acyclic Terpenes. ChemPlusChem, 2022, 87, .	2.8	15
22	Pinene: reichlich vorhandene und erneuerbare Bausteine f $\tilde{A}\frac{1}{4}$ r eine Vielzahl an nachhaltigen Polymeren. Angewandte Chemie, 2018, 130, 14560-14569.	2.0	10
23	(+)â€Limoneneâ€Lactam: Synthesis of a Sustainable Monomer for Ringâ€Opening Polymerization to Novel, Biobased Polyamides. Macromolecular Rapid Communications, 2022, 43, e2200185.	3.9	8
24	In situ IR-spectroscopy as a tool for monitoring the radical hydrosilylation process on silicon nanocrystal surfaces. Nanoscale, 2017, 9, 8489-8495.	5.6	7
25	Covalent polyester-biomolecule conjugates: advances in their synthesis and applications in biomedicine and nanotechnology. Polymer International, 2017, 66, 1747-1755.	3.1	7
26	Recent advances in the synthesis of functional materials by engineered and recombinant living cells. Soft Matter, 2017, 13, 6672-6677.	2.7	7
27	<i>î²</i> â€Pineneâ€Derived Polyesteramides and Their Blends: Advances in Their Upscaling, Processing, and Characterization. Macromolecular Rapid Communications, 2021, 42, e2100065.	3.9	6
28	[OSSO]â€type Chromium(III) Complexes for the reaction of CO2 with epoxides. ChemPlusChem, 2022, , e202200038.	2.8	3
29	Einblick: Polymere und Nachhaltigkeit. Nachrichten Aus Der Chemie, 2020, 68, 67-69.	0.0	2
30	The Terpenes Limonene, Pinene(s), and Related Compounds: Advances in Their Utilization for Sustainable Polymers and Materials. Advances in Polymer Science, 2022, , 35-64.	0.8	2
31	Biobased Polyamides: Academic and Industrial Aspects for Their Development and Applications. Advances in Polymer Science, 2022, , 327-395.	0.8	1