Hirofumi Tsukasaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9584859/publications.pdf

Version: 2024-02-01

54 papers 1,376 citations

394421 19 h-index 36 g-index

54 all docs 54 docs citations

54 times ranked 2137 citing authors

#	Article	IF	CITATIONS
1	Covalency-reinforced oxygen evolution reaction catalyst. Nature Communications, 2015, 6, 8249.	12.8	393
2	Bifunctional Oxygen Reaction Catalysis of Quadruple Manganese Perovskites. Advanced Materials, 2017, 29, 1603004.	21.0	148
3	lonic conductivity and crystallization process in the Li2S–P2S5 glass electrolyte. Solid State Ionics, 2018, 317, 122-126.	2.7	55
4	Synergistically Enhanced Oxygen Evolution Reaction Catalysis for Multielement Transition-Metal Oxides. ACS Applied Energy Materials, 2018, 1, 3711-3721.	5.1	53
5	Pair distribution function analysis of sulfide glassy electrolytes for all-solid-state batteries: Understanding the improvement of ionic conductivity under annealing condition. Scientific Reports, 2017, 7, 6972.	3.3	51
6	A novel discharge–charge mechanism of a S–P ₂ S ₅ composite electrode without electrolytes in all-solid-state Li/S batteries. Journal of Materials Chemistry A, 2017, 5, 11224-11228.	10.3	48
7	Direct observation of a non-crystalline state of Li2S–P2S5 solid electrolytes. Scientific Reports, 2017, 7, 4142.	3.3	47
8	Analysis of structural and thermal stability in the positive electrode for sulfide-based all-solid-state lithium batteries. Journal of Power Sources, 2017, 367, 42-48.	7.8	38
9	Enhanced Catalytic Activity and Stability of the Oxygen Evolution Reaction on Tetravalent Mixed Metal Oxide. Chemistry of Materials, 2020, 32, 3893-3903.	6.7	36
10	A reversible oxygen redox reaction in bulk-type all-solid-state batteries. Science Advances, 2020, 6, eaax7236.	10.3	34
11	Characterization of sulfur nanocomposite electrodes containing phosphorus sulfide for high-capacity all-solid-state Na/S batteries. Solid State Ionics, 2017, 311, 6-13.	2.7	30
12	Crystallization behavior of the Li2S–P2S5 glass electrolyte in the LiNi1/3Mn1/3Co1/3O2 positive electrode layer. Scientific Reports, 2018, 8, 6214.	3.3	30
13	Amorphous LiCoO 2 Li 2 SO 4 active materials: Potential positive electrodes for bulk-type all-oxide solid-state lithium batteries with high energy density. Journal of Power Sources, 2017, 348, 1-8.	7.8	29
14	Exothermal mechanisms in the charged LiNi1/3Mn1/3Co1/3O2 electrode layers for sulfide-based all-solid-state lithium batteries. Journal of Power Sources, 2019, 434, 226714.	7.8	29
15	Deterioration process of argyrodite solid electrolytes during exposure to humidity-controlled air. Journal of Power Sources, 2022, 524, 231085.	7.8	24
16	Direct observation of a non-isothermal crystallization process in precursor Li 10 GeP 2 S 12 glass electrolyte. Journal of Power Sources, 2017, 369, 57-64.	7.8	23
17	Quantitative analysis of crystallinity in an argyrodite sulfide-based solid electrolyte synthesized via solution processing. RSC Advances, 2019, 9, 14465-14471.	3.6	22
18	Exothermal behavior and microstructure of a LiNi1/3Mn1/3Co1/3O2 electrode layer using a Li4SnS4 solid electrolyte. Journal of Power Sources, 2020, 479, 228827.	7.8	22

#	Article	IF	Citations
19	High ionic conductivity of multivalent cation doped Li ₆ PS ₅ Cl solid electrolytes synthesized by mechanical milling. RSC Advances, 2020, 10, 22304-22310.	3.6	20
20	lonic conductivity and thermal stability of Li2O–Li2S–P2S5 oxysulfide glass. Solid State Ionics, 2020, 347, 115267.	2.7	19
21	Thermal behavior and microstructures of cathodes for liquid electrolyte-based lithium batteries. Scientific Reports, 2018, 8, 15613.	3.3	17
22	Structural changes and microstructures in stuffed tridymite-type compounds Ba1â^'xSrxAl2O4. Japanese Journal of Applied Physics, 2014, 53, 09PB01.	1.5	14
23	Ex situ investigation of exothermal behavior and structural changes of the Li3PS4- LiNi1/3Mn1/3Co1/3O2 electrode composites. Solid State Ionics, 2019, 342, 115046.	2.7	13
24	Synthesis and Electrochemical Properties of Li ₃ CuS ₂ as a Positive Electrode Material for All-Solid-State Batteries. ACS Applied Energy Materials, 2021, 4, 20-24.	5.1	13
25	Amorphization of Sodium Cobalt Oxide Active Materials for High-Capacity All-Solid-State Sodium Batteries. Chemistry of Materials, 2018, 30, 6998-7004.	6.7	12
26	Amorphous Niâ€Rich Li(Ni _{1â^'} <i>_x</i> _{a^'} <i>_y</i> Mn <i>_x</i> Co <i>_{esterior Bulkâ€√ype Allâ€Oxide Solidâ€6tate Batteries. Advanced Materials Interfaces, 2019, 6, 1802016.}</i>	sub _{}.} y <td>o> <u>{/j</u>>)O<sub< td=""></sub<></td>	o> <u>{/j</u> >)O <sub< td=""></sub<>
27	Thermal behavior and microstructure of the Li3PS4–ZnO composite electrolyte. Journal of Power Sources, 2019, 436, 226865.	7.8	11
28	<i>In situ</i> observation of the deterioration process of sulfide-based solid electrolytes using airtight and air-flow TEM systems. Microscopy (Oxford, England), 2021, 70, 519-525.	1.5	11
29	Cycle Degradation Analysis by High Precision Coulometry for Sulfide-Based All-Solid-State Battery Cathode under Various Potentials. Electrochemistry, 2022, 90, 047003-047003.	1.4	11
30	Microstructure and Charge–Discharge Mechanism of a Li ₃ CuS ₂ Positive Electrode Material for All-Solid-State Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 6290-6295.	5.1	10
31	Reversible Charge/Discharge Reaction of a Ternary Metal Fluoride, Pb ₂ CuF ₆ : A Highly Conductive Cathode Material for Fluoride-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 1002-1009.	5.1	10
32	Optimization of lithium ion conductivity of Li2S-P2S5 glass ceramics by microstructural control of crystallization kinetics. Solid State Ionics, 2021, 362, 115583.	2.7	9
33	Crystallization behaviors in superionic conductor Na3PS4. Journal of Power Sources, 2021, 511, 230444.	7.8	9
34	A Fluctuating State in the Framework Compounds (Ba,Sr)Al2O4. Scientific Reports, 2016, 6, 19154.	3.3	8
35	Preparation of LiNi _{1/3} 1/3Co _{1/3} O ₂ <td>%gt;/Li< </td> <td>;sub>3<</td>	%gt;/Li< 	;sub>3<
36	Charged domain boundaries stabilized by translational symmetry breaking in the hybrid improper ferroelectric Ca3–xSrxTi2O7. Communications Materials, 2021, 2, .	6.9	8

#	Article	IF	CITATIONS
37	Structural investigation of the SrAl 2 O 4 -BaAl 2 O 4 solid solution system with unstable domain walls. Journal of Solid State Chemistry, 2017, 249, 149-153.	2.9	7
38	Strain-induced $\langle i \rangle \hat{l} \mu \langle i \rangle$ -martensitic transformation and hydrogen embrittlement of SUS304 stainless steel. Philosophical Magazine Letters, 2019, 99, 404-413.	1.2	7
39	Annealing effect on local structure and negative thermal expansion of antiperovskite manganese nitride fine particles. Applied Physics Express, 2020, 13, 075501.	2.4	6
40	Features of the ferroelectric tetragonal state in the simple-perovskite mixed-oxide system (1 â^) Tj ETQq0 0 0 rgBT Journal of the Ceramic Society of Japan, 2018, 126, 170-177.	「/Overlock 1.1	2 10 Tf 50 6 4
41	Presence of the Ferroelectric Monoclinic State in the Mixed Ferroelectric System Ba(Ti _{1-x} Zr _x)O ₃ . Advanced Materials Research, 0, 409, 555-560.	0.3	3
42	Ferroelectric state in lead-free mixed-oxide system (1 â^') Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 547 Td (<i>x&having high Ba contents. Journal of the Ceramic Society of Japan, 2019, 127, 304-309.</i>	lt;/i>)N 1.1	la <sub&g 3</sub&g
43	Highly active postspinel-structured catalysts for oxygen evolution reaction. RSC Advances, 2022, 12, 5094-5104.	3.6	3
44	Direct Observation of the Polar State in the Relaxor Ba(Ti _{1â^'x} Zr _x)O ₃ by Transmission Electron Microscopy. Ferroelectrics, 2014, 460, 18-33.	0.6	2
45	Features of the ferroelectric rhombohedral state in Ba(Ti _{1−} <i></i> >Ci> _{>Ci>_{>No₃ having the simple perovskite structure. Journal of the Ceramic Society of Japan, 2015, 123, 913-919.}}	1.1	2
46	Structural changes and microstructures of Ba1-x Sr x Al2O4 for 0 < x < 0.4. Journal of the Korean Physical Society, 2015, 66, 1355-1358.	0.7	2
47	Features of Ferroelectric States in the Simple-Perovskite Mixed-Oxide System (1â°'x)Pb(Zn1/3Nb2/3)O3–xPbTiO3 with Lower Ti Contents. Journal of the Physical Society of Japan, 2016, 85, 034708.	1.6	2
48	Features of the Relaxor State in the Simple-Perovskite Mixed-Oxide System (1 â^') Tj ETQq0 0 0 rgBT /Overlock 10	тƒ.50 302	Td (x)Pb(M
49	Unusual inhomogeneous microstructures in charge glass state of PbCrO ₃ . Japanese Journal of Applied Physics, 2018, 57, 050301.	1.5	2
50	Suppression of structural phase transition by Sr substitution in the improper ferroelectric BaAl2O4. Japanese Journal of Applied Physics, 2015, 54, 10NC02.	1.5	1
51	Modulated structures and associated microstructures in the ferroelectric phase of Ba1â^'xSrxAl2O4for 0.7 â%x≠1.0. Japanese Journal of Applied Physics, 2016, 55, 011502.	1.5	1
52	Lithium Ion Conduction in a Cation-Deficient Quadruple Perovskite LiCuTa ₃ O ₉ Epitaxial Thin Film: Theoretical and Experimental Investigations. Chemistry of Materials, 2020, 32, 9753-9760.	6.7	1
53	Stabilization of layered perovskite structures via strontium substitution in Ca3Ti2O7 revealed via elemental mapping. Journal of Applied Physics, 2022, 131, 024102.	2.5	1
54	Microstructure and Charge-discharge Properties of a Li3CuS2 active material for All-Solid-State Batteries. Microscopy and Microanalysis, 2021, 27, 3424-3425.	0.4	O